当前位置: 首页 > 专利查询>扬州大学专利>正文

一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统技术方案

技术编号:38396426 阅读:13 留言:0更新日期:2023-08-07 11:10
本发明专利技术公开了一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统,包括若干组由多个巴条组成的半导体激光堆栈;每组半导体激光堆栈中每个巴条的输出经快轴准直透镜和慢轴准直透镜进行准直后,经沿慢轴方向光束半宽设置的半波片入射到同步实现快轴压缩与慢轴自偏振棱镜,使光束在快轴方向上产生偏移并与慢轴方向上的光束偏振合束后出射,且每相邻的两个巴条的光在快轴方向相互偏移靠近;经棱镜的出射光束再通过光束压缩填充棱镜进行压缩填充,再通过波长合束镜合束后经非球面透镜聚焦耦合进入目标光纤。本发明专利技术可以使光束在快轴方向上发生偏移压缩暗区并与偏振合束技术相结合,实现慢轴方向上的光束偏振合束,均匀光束质量。质量。质量。

【技术实现步骤摘要】
一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统


[0001]本专利技术涉及一种光纤耦合系统。

技术介绍

[0002]半导体激光器因为空间小、寿命长、电与光之间的转换率高的优点在工业加工、激光泵浦、生物医疗等领域得到广泛的使用。为了提高功率,发光巴条在垂直方向上堆叠,这也会导致快轴方向上光束存在暗区,快慢轴上的光束质量不均匀,光束很难耦合进入目标光纤,光纤耦合模块的光束整形作用至关重要。
[0003]现有解决光束质量不均匀的主流光束整形的方法主要是利用反射和折射技术对慢轴光束进行切割重排如双切割光束整形技术、移步切割旋转棱镜等使快轴与慢轴的光束质量均匀,并通过使用阶梯镜等的全反射效应来压缩光束达到消除暗区的效果。这样的方法需要大量的棱镜,加工精度要求高,调节困难,耦合效率较低。

技术实现思路

[0004]专利技术目的:针对上述现有技术,提出一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统,在不需要阶梯镜、条纹棱镜或棱镜堆栈的同时,利用偏移压缩快轴方向上的光束压缩暗区以及慢轴方向上的偏振合束均匀快慢轴上的光束质量,极大的减少了棱镜的使用数量,实现高效的光纤耦合。
[0005]技术方案:一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统,包括:若干组由多个巴条组成的半导体激光堆栈;每组半导体激光堆栈中每个巴条的输出经快轴准直透镜和慢轴准直透镜进行准直后,经沿慢轴方向光束半宽设置的半波片入射到同步实现快轴压缩与慢轴自偏振棱镜,使光束在快轴方向上产生偏移并与慢轴方向上的光束偏振合束后出射,且半导体激光堆栈中每相邻的两个巴条的光在快轴方向相互偏移靠近;所述同步实现快轴压缩与慢轴自偏振棱镜的出射光束再通过光束压缩填充棱镜进行压缩填充;各半导体激光堆栈经压缩填充后的光速通过波长合束镜合束后经非球面透镜聚焦耦合进入目标光纤。
[0006]进一步的,半导体激光堆栈中每个巴条对应一个所述同步实现快轴压缩与慢轴自偏振棱镜,每相邻的两个所述同步实现快轴压缩与慢轴自偏振棱镜镜像设置;
[0007]所述同步实现快轴压缩与慢轴自偏振棱镜由斜方棱镜切割后得到,具体切割方法包括如下步骤:
[0008]步骤1:根据系统设计,每个巴条的光束在快轴方向上产生的偏移为Δh,斜方棱镜的折射率n1,斜方棱镜沿光束光轴方向的长度l,根据公式计算得到斜方棱镜沿光束光轴方向的侧面平行四边的底角θ;
[0009][0010]其中,n为斜方棱镜的相对折射率;
[0011]步骤2:根据相邻巴条间距H确定斜方棱镜的高度,根据光束慢轴光宽D确定斜方棱镜的的宽度,再结合l和θ,得到单个斜方棱镜的具体形状;
[0012]步骤3:准直后的光束入射到所述斜方棱镜后沿快轴方向发生偏移,以光束偏折面作为基准面,以基准面垂直斜45
°
的两个间距为D/2的面切割所述斜方棱镜,舍去切割后与所述半波片正对的三角形棱镜,并在另一个切割面上镀有通过P偏振光薄膜。
[0013]进一步的,所述每个巴条的光束在快轴方向上产生的偏移为Δh=0.669mm,所述斜方棱镜沿光束光轴方向的长度l=5.2mm,所述斜方棱镜折射率n1=1.516,所述斜方棱镜沿光束光轴方向的侧面平行四边的底角θ=70
°

[0014]进一步的,相邻巴条间距H取值范围为1.6~1.9mm。
[0015]进一步的,各组半导体激光堆栈的光源波长各不相同。
[0016]进一步的,所述光束压缩填充棱镜由沿光束宽度方向间隔设置的三只等腰直角三角棱镜组成。
[0017]进一步的,所述快轴准直镜为非球面微柱透镜FAC,所述慢轴准直透镜为柱面微透镜阵列SAC。
[0018]进一步的,所述光束压缩填充棱镜中的三只等腰直角三角棱镜的高度一致,高度取值范围为5~10mm。
[0019]有益效果:本专利技术可以使光束在快轴方向上发生偏移压缩暗区并与偏振合束技术相结合,实现慢轴方向上的光束偏振合束,均匀光束质量。本专利技术不需采用切割重排如双切割光束整形技术、移步切割旋转棱镜等使两轴的光束质量均匀并填充暗区,整个光束整形过程简单,结构紧凑实用,易于设置实现,有较高的耦合效率。
附图说明
[0020]图1为本专利技术光纤耦合系统的整体结构示意图;
[0021]图2为本专利技术光纤耦合系统中同步实现快轴压缩与慢轴自偏振棱镜切割前的结构示意图;
[0022]图3为本专利技术光纤耦合系统中同步实现快轴压缩与慢轴自偏振棱镜切割后的结构示意图;
[0023]图4为本专利技术光纤耦合系统中同步实现快轴压缩与慢轴自偏振棱镜切割后的俯视结构示意图;
[0024]图5为本专利技术光纤耦合系统中同步实现快轴压缩与慢轴自偏振棱镜实现快轴方向上的光束偏移压缩的光路图;
[0025]图6为本专利技术光纤耦合系统中基于同步实现快轴压缩与慢轴自偏振棱镜的慢轴光束偏振合束的光路图;
[0026]图7为本专利技术光纤耦合系统中基于同步实现快轴压缩与慢轴自偏振棱镜的快轴光束偏移压缩与慢轴光束偏振合束的光路图;
[0027]图8为本专利技术光纤耦合系统中光束压缩填充棱镜的结构示意图;
[0028]图9为基本专利技术光纤耦合系统中光束压缩填充的光路图。
具体实施方式
[0029]下面结合附图对本专利技术做更进一步的解释。
[0030]如图1所示,一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统,包括:三组半导体激光堆栈1,各半导体激光堆栈1分别由8个cm

bar的巴条组成,每个巴条的间距H=1.8mm,且光源均为P偏振态;每组半导体激光堆栈1输出波长不同,分别记为λ1、λ2、λ3。
[0031]每组半导体激光堆栈1的输出端前都设置了快轴准直透镜4、慢轴准直透镜5、半波片6、同步实现快轴压缩与慢轴自偏振棱镜7以及光束压缩填充棱镜9。具体的,每组半导体激光堆栈1中每个巴条的输出光束经快轴准直透镜4和慢轴准直透镜5进行准直后,经沿慢轴方向光束半宽设置的半波片6水平入射到同步实现快轴压缩与慢轴自偏振棱镜7,使光束在快轴方向上产生偏移,并与慢轴方向上的光束偏振合束后出射,同时每组半导体激光堆栈1中每相邻的两个巴条的光在快轴方向相互偏移靠近,如图5所示。
[0032]每组半导体激光堆栈1对应的同步实现快轴压缩与慢轴自偏振棱镜7的出射光束再通过光束压缩填充棱镜9进行压缩填充。各半导体激光堆栈1经压缩填充后的光速通过波长合束镜10合束提高功率后经非球面透镜12聚焦耦合进入目标光纤13。
[0033]本系统中,每组半导体激光堆栈1中每个巴条输出分别正对一个同步实现快轴压缩与慢轴自偏振棱镜7,每相邻的两个同步实现快轴压缩与慢轴自偏振棱镜7镜像设置。如图2至图4所示,同步实现快轴压缩与慢轴自偏振棱镜7由斜方棱镜切割后得到,具体切割方法包括如下步骤:
[0034]步骤1:根据系统设计,每个巴条的光束在快轴方向上产生的偏移为Δh,斜方棱镜的折射率n1,空气的折射率n0,则相对折射率n=本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于同步快轴压缩与慢轴自偏振棱镜的光纤耦合系统,其特征在于,包括:若干组由多个巴条组成的半导体激光堆栈(1);每组半导体激光堆栈(1)中每个巴条的输出经快轴准直透镜(4)和慢轴准直透镜(5)进行准直后,经沿慢轴方向光束半宽设置的半波片(6)入射到同步实现快轴压缩与慢轴自偏振棱镜(7),使光束在快轴方向上产生偏移并与慢轴方向上的光束偏振合束后出射,且半导体激光堆栈(1)中每相邻的两个巴条的光在快轴方向相互偏移靠近;所述同步实现快轴压缩与慢轴自偏振棱镜(7)的出射光束再通过光束压缩填充棱镜(9)进行压缩填充;各半导体激光堆栈(1)经压缩填充后的光速通过波长合束镜(10)合束后经非球面透镜(12)聚焦耦合进入目标光纤(13)。2.根据权利要求1所述的光纤耦合系统,其特征在于,半导体激光堆栈(1)中每个巴条对应一个所述同步实现快轴压缩与慢轴自偏振棱镜(7),每相邻的两个所述同步实现快轴压缩与慢轴自偏振棱镜(7)镜像设置;所述同步实现快轴压缩与慢轴自偏振棱镜(7)由斜方棱镜切割后得到,具体切割方法包括如下步骤:步骤1:根据系统设计,每个巴条的光束在快轴方向上产生的偏移为Δh,斜方棱镜的折射率n1,斜方棱镜沿光束光轴方向的长度l,根据公式计算得到斜方棱镜沿光束光轴方向的侧面平行四边的底角θ;步骤2:根据相邻巴条间距H确定斜方棱镜的高度,根据光束慢轴光宽D确定斜方棱镜的的宽度,再结合l和θ,得到单个斜方棱镜的具体形状;步骤3:...

【专利技术属性】
技术研发人员:程立文刘昶罗雨中季张杰薛礼瑞马立蒋晨洁
申请(专利权)人:扬州大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1