【技术实现步骤摘要】
一种商品标注方法及装置
[0001]本申请涉及人工智能
,尤其涉及一种商品标注方法及装置。
技术介绍
[0002]得益于算力、数据的爆炸式增长,基于深度学习的AI技术得以迅速发展,并在诸多行业领域落地。比如,目标检测、识别以及分类等AI视觉技术在许多场景的应用表现优越。
[0003]在深度神经网络的模型训练中需要大量的高质量标注数据,数据的质量和规模是影响算法模型性能的关键因素。实践经验表明,标注数据的数据量越大、质量越高、对模型训练的效果越有帮助。
[0004]目前,在常规的人工标注流程中,标注人员需要将待标注图片与所有类别的样例图进行逐一的视觉比对。当标注类别数到达万级别,待标注图片百万级别时,人工比对工作量繁重,且耗时巨大,使得标注效率低下。
技术实现思路
[0005]有鉴于此,本申请实施例提供了一种商品标注方法及装置,旨在降低人工标注的复杂度,使得数据标注质量提高,进而提升商品标注效率。
[0006]第一方面,本申请提供了一种商品标注方法,所述方法包括:
[000 ...
【技术保护点】
【技术特征摘要】
1.一种商品标注方法,其特征在于,所述方法包括:获取待标注商品的图像信息;利用预先训练的图像特征提取模型,对所述图像信息进行特征提取,得到所述图像信息对应的图像特征向量;计算所述图像特征向量与预设商品类别样本集中每个商品样本的相似度,得到所述图像特征向量与预设商品类别样本集中每个类别的相似度结果;所述预设商品类别样本集包括多个商品样本,每个商品样本对应的商品类别,以及每个商品样本对应的样例图;基于所述图像特征向量与预设商品类别样本集中每个类别的相似度结果,选择满足预设筛选条件的商品类别作为所述待标注商品的预测类别集合,以使得标注人员根据所述预测类别集合中每个类别的商品样本与所述待标注商品的相似度,对所述待标注商品进行标注。2.根据权利要求1所述的方法,其特征在于,所述图像特征提取模型的训练过程如下:获取训练集,所述训练集包括已标注的商品样本集;利用所述训练集,对所述图像特征提取模型进行训练,所述图像特征提取模型用于提取商品样本特征。3.根据权利要求1所述的方法,其特征在于,所述计算所述图像特征向量与预设商品类别样本集中每个商品样本的相似度,得到所述图像特征向量与预设商品类别样本集中每个类别的相似度结果,包括:利用相似度距离公式,计算所述图像特征向量与预设商品类别样本集中每个商品样本的相似度;根据所述图像特征向量与预设商品类别样本集中每个商品样本的相似度,得到所述图像特征向量与预设商品类别样本集中每个类别的相似度结果。4.根据权利要求3所述的方法,其特征在于,所述根据所述图像特征向量与预设商品类别样本集中每个商品样本的相似度,得到所述图像特征向量与预设商品类别样本集中每个类别的相似度结果,包括:根据所述图像特征向量与预设商品类别样本集中每个商品样本的相似度,确定所述图像特征向量与预设商品类别样本集中每个类别的相似度平均值;基于所述图像特征向量与预设商品类别样本集中每个类别的相似度平均值,得到所述图像特征向量与预设商品类别样本集中每个类别的相似度结果。5.根据权利要求1所述的方法,其特征在于,在所述对所述待标注商品进行标注之后,所述方法还包括:将标...
【专利技术属性】
技术研发人员:许欢庆,牟永奇,马彦飞,
申请(专利权)人:北京朗镜科技有限责任公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。