基于深度学习的热态环件轧制变形几何状态在线测量方法技术

技术编号:37145434 阅读:38 留言:0更新日期:2023-04-06 21:56
本发明专利技术提供了基于深度学习的热态环件轧制变形几何状态在线测量方法,通过采集热态环件图像,用采集图像样本进行训练得到模板图像,利用模板匹配算法匹配测试图像与输入图像,增强实时图像,捕捉较高精度的环件边缘,检测出环件的实际边缘点,通过拟合实现了在线测量处于非均匀温度色差、飞屑及轧辊遮挡等干扰下的热态环件轧制变形几何状态的功能。本发明专利技术解决了热态环件轧制过程中因轧辊对目标环件的遮挡以及飞溅氧化皮、气雾等情况导致的环件几何状态特征无法快速精确提取的问题,在保证匹配精度的同时,加快了目标匹配运算效率,提高了算法整体鲁棒性。高了算法整体鲁棒性。高了算法整体鲁棒性。

【技术实现步骤摘要】
基于深度学习的热态环件轧制变形几何状态在线测量方法


[0001]本专利技术属于机器视觉
,具体涉及基于深度学习的热态环件轧制变形几何状态在线测量方法。

技术介绍

[0002]环件作为汽车、船舶、冶金、化工、航空航天等领域中的核心基础零部件,其质量性能受到重点关注。环件轧制是高性能无缝环件先进成型制造技术。大型环件通常采用热态轧制,由于环件再热态轧制初期处于高温状态,现有接触式测量技术很难应用于这种高温场合。
[0003]由于大型环件在热态轧制初期处于1250
°
的高温状态,热态环件本体辐射的可见光会干扰光学测量,增大了测量误差。在不同的轧制阶段,轧辊对热态环件也有一定遮挡,同时伴有环件外层表皮脱落飞溅、气雾等,以视觉测量为代表的非接触式测量在实时监测过程中难以保证测量精度和效率。
[0004]机器视觉因具有非接触、效率高、获取信息全面等特点,在测量热态环件几何状态时具有显著优势。但是热态环件本体辐射的可见光会干扰光学测量,增大了测量误差。此外,轧制过程中环件变形状态剧烈时变,对测量系统响应要求较高。现有视本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.基于深度学习的热态环件轧制变形几何状态在线测量方法,其特征在于:包括以下步骤:S1:通过图像采集装置获取热轧实验中热态环件的轧制图像,通过深度学习算法对热态环件的轧制图像进行目标检测,确定对应的模板图像和特征图像;S2:采用图像边缘匹配算法对模板图像和轧制图像进行匹配;S3:引用权重函数拟合热态环件的边界轮廓,并计算热态环件的外径尺寸。2.根据权利要求1所述的基于深度学习的热态环件轧制变形几何状态在线测量方法,其特征在于:所述的步骤S1中,具体步骤为:S11:通过图像采集装置获取热轧实验中热态环件的实时的轧制图像;S12:将轧制图像作为图像样本,按照预设比例随机划分到训练集、测试集和验证集中,通过深度学习算法采用训练集训练并更新迭代卷积神经网络的权重参数,对图像采集装置采集的轧制图像进行目标粗识别,得到轧制图像对应的模板图像;模板图像上框选有目标区域用于捕捉目标热态环件;S13:对原尺寸的图像样本进行切片操作,得到第一次特征图;对第一次特征图进行卷积核卷积得到特征图像。3.根据权利要求2所述的基于深度学习的热态环件轧制变形几何状态在线测量方法,其特征在于:所述的步骤S1中,还包括以下步骤:采用张正友标定法、采用标定板对热态环件的实际尺寸进行标定,矫正镜头畸变。4.根据权利要求2所述的基于深度学习的热态环件轧制变形几何状态在线测量方法,其特征在于:所述的步骤S2中,具体步骤为:S21:输入模板图像,对模板图像进行包括平移、旋转、缩放的不同角度或不同尺度的仿射变换,计算模板图像的特征点与特征向量;S22:输入轧制图像,计算像素点位置,构造梯度相应图;S23:采用图像边缘匹配,对轧制图像与模板图像计算相似度完成模板匹配。5.根据权利要求4所述的基于深度学习的热态环件轧制变形几何状态在线测量方法,其特征在于:所述的步骤S3中,具体步骤为:S31:对步骤S2得到的图像进行增强、对像素进行线性变换,突出亮...

【专利技术属性】
技术研发人员:汪小凯武国庆华林韩星会董杰
申请(专利权)人:武汉理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1