一种航空探地雷达无效数据辨识方法技术

技术编号:36825485 阅读:30 留言:0更新日期:2023-03-12 01:22
本发明专利技术公开了一种航空探地雷达无效数据辨识方法,所述方法包括如下步骤:S1:通过航空探地雷达进行图像数据采集,获得地质雷达剖面数据,形成样本数据集;S2:对航空探地雷达数据剖面图像进行标注,随机划分训练集、验证集以及测试集;S3:利用卷积神经网络模型对训练集进行训练,训练中采用验证集查看模型,初步得到权重模型;S4:利用测试集样本权重模型进行模型测试,得到训练好的航空探地雷达无效数据辨识卷积神经网络模型;S5:对航空探地雷达数据剖面图像测试集进行无效数据目标检测,得到标定无效数据的探地雷达数据剖面图。采用该方法可以有效提高辨识效率与准确度,为有效的探地雷达数据解译做好基础工作准备。地雷达数据解译做好基础工作准备。地雷达数据解译做好基础工作准备。

【技术实现步骤摘要】
一种航空探地雷达无效数据辨识方法


[0001]本专利技术涉及一种探地雷达数据图像处理方法,具体涉及一种航空探地雷达无效数据辨识方法。

技术介绍

[0002]探地雷达是一种浅层地球物理探测手段,常应用于工程质量无损检测、水文地质调查、矿产资源勘探、地下管线普查、地质灾害隐患调查等,近年来随着发展勘探需求,逐步由手持拖行勘探发展为搭载器搭载形式勘探,比如车载、机载。其中机载探地雷达在数据采集时常常由于无人机飞行造成一系列无效数据,传统的无效数据辨识是通过人工分辨的方式,需要专业技术人员根据飞行造成无效数据进行人工判别,人工分辨效率低,划定缺乏统一标准,常常出现遗漏或误判等问题。随着人工智能的发展,各种神经网络模型相继应用于地质行业,例如运用基于神经网络算法的探地雷达应用于采空区辨识、岩溶辨识等,但是针对无人机搭载探地雷达常常得到一些飞行过程中产生的无效数据,目前还停留于人工标注。

技术实现思路

[0003]本专利技术的目的是提供一种航空探地雷达无效数据辨识方法,该方法解决了现有技术航空探地雷达数据人工标定效率低、出错率高等问题,实现本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种航空探地雷达无效数据辨识方法,其特征在于所述方法包括如下步骤:步骤S1:通过航空探地雷达进行图像数据采集,获得地质雷达剖面数据,形成样本数据集,其中:地质雷达剖面数据包含稳定飞行的有效数据和4类无效数据:飞行转弯时段数据、无人机上升时段数据、无人机下降时段数据、无人机突然加速或减速刹车时段数据,将这些无效数据与有效数据形成1组采集数据;步骤S2:利用步骤S1的样本数据集,使用VOC格式对航空探地雷达数据剖面图像进行标注,随机划分训练集、验证集以及测试集;步骤S3:利用卷积神经网络模型对步骤S2的训练集进行训练,训练中采用验证集查看模型,初步得到权重模型;步骤S4:利用测试集样本对步骤S3训练得到的权重模型进行模型测试,如果测试模型精度不满足要求则增加样本继续训练,如果测试模型精度满足要求则得到训练好的航空探地雷达无效数据辨识卷积神经网络模型;步骤S5:利用步骤S4获得训练好的航空探地雷达无效数据辨识卷积神经网络模型,对航空探地雷达数据剖面图像测试集进行无效数据目标检测,得到标定无效数据的探地雷达数据剖面图。2.根据权利要求1所述的航空探地雷达无效数据辨识方法,其特征在于所述步骤S1中,数据集至少采集200组数据,每组数据应包含有效数据和4类无效数据,并且采集的200组数据应该选择不一样的采集区。3.根据权利要求1所述的航空探地雷达无效数据辨识方法,其特征在于所述步骤S2中,训练集、验证集与测试集的比例为8:1:1。4.根据权利要求1所述的航空探地雷达无效数据辨识方法,其特征在于所述步骤S2中,数据剖面图像为对称或近似对称时,该段标注为飞行转弯时段数据;数据剖面图像按一定角度向下与无人机向上飞行角度对称时,该段标注为无人机上升时段数据;数据剖面图像突然模糊、分辨率明显异于总体情况时,该段标注为无人机突然加速或减速刹车时段数据;数据剖面图像按一定角度向上与无人机向下降落角度对称时...

【专利技术属性】
技术研发人员:唐亮凌贤长张钟远毛小刚张熙阳熊聪陈宏伟邱瑞丛晟亦田爽孔祥勋
申请(专利权)人:哈尔滨工业大学重庆研究院中铁十七局集团有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1