基于图马尔可夫神经网络的变压器故障的诊断系统技术方案

技术编号:36781340 阅读:19 留言:0更新日期:2023-03-08 22:16
本公开描述一种基于图马尔可夫神经网络的变压器故障的诊断系统。该诊断系统包括获取模块和预测模块,获取模块配置为获取多个包括类型为文本的初始特征的故障数据;预测模块配置为对多个故障数据进行预处理以获取多个包括多个目标特征的目标故障数据,构建基于图马尔可夫神经网络的诊断模型以同时对目标故障数据的故障类型之间的依赖关系和目标故障数据的特征表示进行建模,利用目标故障数据构建图结构并基于图结构对基于图马尔可夫神经网络的诊断模型进行优化以获取目标诊断模型,并且将待诊断的故障数据进行预处理后输入目标诊断模型以输出待诊断的故障数据所属的故障类型。由此,能够提高对故障类型预测的准确率。能够提高对故障类型预测的准确率。能够提高对故障类型预测的准确率。

【技术实现步骤摘要】
基于图马尔可夫神经网络的变压器故障的诊断系统
[0001]本申请是申请日为2021年06月28日、申请号为2021107198738、专利技术名称为基于图马尔可夫神经网络的变压器故障的诊断方法的专利申请的分案申请。


[0002]本公开大体涉及变压器故障诊断领域,具体涉及一种基于图马尔可夫神经网络的变压器故障的诊断系统。

技术介绍

[0003]变压器作为电网系统的核心设备,若发生故障,将会对整个电网系统的稳定运行造成严重威胁,不仅影响到居民的用电生活,还会由于断电引发其他相关问题,造成灾难性的后果。因此,及时准确地对变压器进行故障诊断以确定故障类型后进行精准维修显得至关重要,有利于提高电网系统的安全性和可靠性。
[0004]现有变压器故障诊断方法一般是收集变压器的故障数据,并利用机器学习的算法对变压器的故障类型进行预测,机器学习的算法例如决策树、支持序列向量机、聚类和关联分析等。然而,由于变压器的故障数据一般包括大量的文本类型的数据,对收集变压器的故障数据进行预处理后转成可用于训练基于机器学习的模型的数据往往耗时较长,并且现有变压本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于图马尔可夫神经网络的变压器故障的诊断系统,其特征在于,包括:获取模块,其配置为获取待诊断的故障数据;以及预测模块,其配置为将所述待诊断的故障数据进行预处理后输入目标诊断模型以输出所述待诊断的故障数据所属的故障类型,其中,获取所述目标诊断模型包括:从多个变压器获取多个故障数据,各个故障数据包括多个初始特征,所述初始特征的类型包括文本,所述初始特征包括变压器的油中铜的浓度、变压器的油中铁的浓度、变压器的油中溶解气体的含量、变压器的缺陷信息、变压器的设备型号、变压器的生产厂家、变压器的投运年限、恶劣气象的信息和绝缘老化的情况,对所述多个故障数据进行包括初步去重和构建序列向量处理的所述预处理以获取多个包括多个目标特征的目标故障数据,所述初步去重为在存在相关性的多个初始特征中保留至少一个初始特征,所述构建序列向量处理为利用连续词袋模型将类型为文本的中间特征更新为序列向量并将所述中间特征作为第二目标特征以获取多个包括多个所述第二目标特征的第二故障数据,将所述第二故障数据作为所述目标故障数据,将所述第二目标特征作为所述目标特征,其中,所述中间特征是经由所述初步去重的初始特征,构建基于图马尔可夫神经网络的诊断模型以同时对所述目标故障数据的故障类型之间的依赖关系和所述目标故障数据的特征表示进行建模,利用所述目标故障数据构建图结构并基于所述图结构对所述诊断模型进行优化以使所述诊断模型结合所述目标故障数据的故障类型之间的依赖关系来预测故障类型,进而获取所述目标诊断模型。2.根据权利要求1所述的诊断系统,其特征在于:所述初始特征还包括变压器的油的温度、变压器的负荷和变压器的突发短路的次数中的至少一种,其中,所述溶解气体包括氢气、甲烷、乙烷、乙烯和乙炔。3.根据权利要求1所述的诊断系统,其特征在于:所述初始特征的类型还包括数值。4.根据权利要求1所述的诊断...

【专利技术属性】
技术研发人员:杨会轩张瑞照
申请(专利权)人:北京华清智汇能源技术有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1