一种主动结构光照明的超分辨显微成像方法及系统技术方案

技术编号:35536229 阅读:53 留言:0更新日期:2022-11-09 15:02
本发明专利技术公开了一种主动结构光照明的超分辨显微成像方法及系统。提出时空联合强度调制方法,可对照明样本的激发光进行空间任意强度的调控,且在不改变入射光相干性的前提下,实现高调制度的主动结构光照明超分辨成像。基于上述调制方法可实现将输入的非均匀高斯分布照明调制成均匀的平顶照明,满足基于荧光强度定量分析的应用需求;根据样本空间强度分布特征主动调整照明光强,满足高动态、低光照剂量成像需求;用户自定义照明区域,满足光刺激、荧光漂白恢复应用需求。本发明专利技术在不损失SIM时空分辨率的前提下,可有效提高SIM的成像动态范围,减少光照剂量,满足细胞亚结构及其相互作用对百纳米以下超分辨、极低光照剂量、高动态范围的成像需求。范围的成像需求。范围的成像需求。

【技术实现步骤摘要】
一种主动结构光照明的超分辨显微成像方法及系统


[0001]本专利技术属于荧光显微成像
,特别是一种主动照明与结构光照明复合的超分辨显微成像系统。

技术介绍

[0002]细胞是一个高度复杂的动态系统,其内部通过膜结构的区隔化形成多种功能迥异的数十种细胞器。这些细胞器的相互作用是维持细胞功能、决定细胞命运的关键。对这些细胞器及其相互作用的研究需要进行百纳米以下高分辨率、极低光照剂量、高动态范围、大视场均匀照明的活细胞成像。
[0003]在获取大视场均匀照明的研究中,光束整形器直接将高斯传播的光束转换为平顶光束,利用一对非球面透镜组,第一个透镜均匀的重新分配高斯光束,第二个透镜重新准直,从而产生平场照明。但基于折射光束整形器的工作距离有限,对表面加工质量和光学排列有严格的要求。光波导可在非常大的视场下提供均匀的照明,但由于它们工作在全内反射模式下,照明限制在盖玻片附近,无法实现切换照明角度实现不同深度照明。且固定的照明尺寸,不能和相机的成像视场进行匹配照明,全玻片照明对细胞样本造成不必要的光损伤。此外,经典方法包括使用一对微透镜阵列或者多模光纤,为了减少激光散斑,在系统中加入了散斑减速器或者振动光纤,但降低了光束的空间相干性,不适用于全内反射照明。ASTER本质上是一种混合扫描宽场照明装置,其按照特定的模式扫描高斯光束,以时间平均的方式提供平顶照明,从而可以在比较宽的视场范围内扫描出均匀照明场。然而,上述平场照明方法只能应用在基于单分子定位的超分辨显微镜中,比如PALM、STORM,其向基于多束光干涉产生余弦分布条纹的结构光照明显微镜(SIM)转化中仍受到限制,原因在于在对入射的非均匀高斯光斑进行调制时,要保障多光束之间频率相同、相位差恒定、偏振方向一直,以致在样品面干涉形成高调制度的照明条纹。
[0004]在拓展显微成像系统动态范围及减少光照剂量的研究中,Vinergoni等将摄影学中广泛应用的多曝光融合技术和基于点扫描的双光子成像技术相结合,并将其应用于内场景大动态范围的神经细胞成像中。但是连续多次曝光采集不仅增加了光照剂量,且降低了成像速度。为了克服多曝光的缺陷,发展出多探测同时成像技术,通过对同一场景进行多级分光成像,同时采集不同曝光量的图像。然而由于采用多个成像光路同时探测,需要对不同的探测器进行校准,光学系统复杂且成本高。由此发展出主动照明技术,在成像系统中加入声光调制器,空间上单像素地对照明光场进行调控,这不仅提高了动态范围,而且减少了光照剂量。Hoebe等为了解决共聚焦显微镜有限的动态范围、光漂白及光毒性问题,研制出照明光剂量空间上可调控的显微成像技术,且在Nikon C1共聚焦显微镜上得到应用。实验验证,此成像技术不仅可以将动态范围提高2倍,而且可将光照剂量降低5倍,有效延长活细胞的存活时间。然而,基于共聚焦、双光子的低光照剂量、高动态成像方法,其分辨率受到光学衍射极限的限制。在使用大数值孔径物镜的情况下,横向极限分辨率约为200nm,轴向分辨率为500nm。此外,基于点扫描成像模式,光漂白和光毒性严重且成像速度慢,无法满足活细
胞动态成像需求。
[0005]相比之下,SIM具有成像速度快、光损伤小、对荧光探针无特殊要求等特点,且百纳米的分辨率正好满足活细胞内重要细胞器的观测要求,已成为活细胞动态成像的首要选择。然而从照明方式上看,SIM本质上是一种宽场荧光显微成像技术,其整体照明强度在样品上呈现高斯形状分布。这种非均匀的照明方式,首先降低了可利用的视场尺寸,为了获得相对均匀的荧光图像,通常截取高斯光斑中心区域进行成像,从而损失了边缘视场。其次,中心亮边缘暗的高斯照明造成成像视场内光漂白特性不一致,中心比边缘更容易被漂白,限制了其在基于荧光强度定量分析中的应用。此外,对于高动态范围样本,这种不考虑样本标记密度的无差别照明方式,会造成弱信号欠曝光、强信号过曝光、背景及离焦信号无效曝光,限制了SIM成像系统的动态范围及造成不必要的光损伤。因此,专利技术一种基于空间光调制器时空联合调制的主动结构光照明超分辨成像方法(Active

SIM),比如将高斯光斑调制成平场照明、根据样本标记密度自适应的调整照明强度、对任意感兴趣区域的照明等,这对于拓展SIM成像技术在活细胞动态长时程成像的应用中至关重要。

技术实现思路

[0006]本专利技术的目的在于对活细胞中亚细胞器及其相互作用的研究中需要进行百纳米以下高分辨率、极低光照剂量、高动态范围、大视场均匀照明的荧光成像需求,提出一种基于空间光调制器的时空联合强度调制方法,建立基于主动结构光照明的超分辨显微成像系统。
[0007]实现本专利技术目的的技术解决方案为:一种主动结构光照明的超分辨显微成像方法,所述方法包括以下步骤:
[0008]步骤1,通过相机采集样品经激光激发的荧光图像;
[0009]步骤2,基于步骤1的图像构建所需的主动结构光照明光场;
[0010]步骤3,对步骤2的主动结构光照明光场进行转换并加载到空间光调制器中,形成时空联合强度调制的主动结构光照明光场;
[0011]步骤4,从步骤3中加载在空间光调制器的全息条纹位面图取出相应的位面图,并开始显示,激光器同步出光照明样本,相机同步曝光采集原始图像数据;
[0012]步骤5,判断全部全息条纹位面图是否显示完成,若是,空间光调制器停止位面显示,且相机停止图像采集,否则按预设的顺序切换到不同空间方向角和位相的位面图,返回步骤4,继续执行同步显示及曝光。
[0013]进一步地,步骤2中所述主动结构光照明光场包括:
[0014]第一照明光场:将输入的非均匀高斯分布光场调制成均匀的平顶照明光场,满足基于荧光强度定量分析及大视场拼接成像的需求;
[0015]或,第二照明光场:根据样本强度分布特征主动调整照明光强,包括强信号区域降低光照剂量、弱信号区域提高光照剂量、无信号或背景区域无光照,满足所需高动态范围、低光照剂量的成像需求;
[0016]或,第三照明光场:自定义指定位置和强度的照明,满足用户自定义感兴趣照明区域的成像需求。
[0017]进一步地,步骤3中调制后的主动结构照明光场的光强空间分布表示为I
a
(x,y):
[0018][0019][0020]式中,I
g
(x,y,t)表示在一个相机曝光周期T内,激发光在样品面上照明光强的时空体积,在只允许一个级次光束通过时的SIM成像过程中,其照明强度在空间上呈现非均匀的高斯分布;M
i
(x,y,t)表示加载在空间光调制器中的第i个强度调制函数或二值位面,N表示加载二值位面的个数,空间光调制器上每个像素的光强调制精度可表示为1/2
N
;t
i
表示每个二值位面对应的时间权重函数,所有时间权重求和为相机的一个曝光周期点(x,y)代表空间光调制器中任意空间坐标;m表示结构光的调制度,k
x
、k
y
、φ表示空间频率和初始相位。
[本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种主动结构光照明的超分辨显微成像方法,其特征在于,所述方法包括以下步骤:步骤1,通过相机采集样品经激光激发的荧光图像;步骤2,基于步骤1的图像构建所需的主动结构光照明光场;步骤3,对步骤2的主动结构光照明光场进行转换并加载到空间光调制器中,形成时空联合强度调制的主动结构光照明光场;步骤4,从步骤3中加载在空间光调制器的全息条纹位面图取出相应的位面图,并开始显示,激光器同步出光照明样本,相机同步曝光采集原始图像数据;步骤5,判断全部全息条纹位面图是否显示完成,若是,空间光调制器停止位面显示,且相机停止图像采集,否则按预设的顺序切换到不同空间方向角和位相的位面图,返回步骤4,继续执行同步显示及曝光。2.根据权利要求1所述的主动结构光照明的超分辨显微成像方法,其特征在于,步骤2中所述主动结构光照明光场包括:第一照明光场:将输入的非均匀高斯分布光场调制成均匀的平顶照明光场,满足基于荧光强度定量分析及大视场拼接成像的需求;或,第二照明光场:根据样本强度分布特征主动调整照明光强,包括强信号区域降低光照剂量、弱信号区域提高光照剂量、无信号或背景区域无光照,满足所需高动态范围、低光照剂量的成像需求;或,第三照明光场:自定义指定位置和强度的照明,满足用户自定义感兴趣照明区域的成像需求。3.根据权利要求1所述的主动结构光照明的超分辨显微成像方法,其特征在于,步骤3中调制后的主动结构照明光场的光强空间分布表示为I
a
(x,y):(x,y):式中,I
g
(x,y,t)表示在一个相机曝光周期T内,激发光在样品面上照明光强的时空体积,在只允许一个级次光束通过时的SIM成像过程中,其照明强度在空间上呈现非均匀的高斯分布;M
i
(x,y,t)表示加载在空间光调制器中的第i个强度调制函数或二值位面,N表示加载二值位面的个数,空间光调制器上每个像素的光强调制精度表示为1/2
N
;t
i
表示每个二值位面对应的时间权重函数,所有时间权重求和为相机的一个曝光周期点(x,y)代表空间光调制器中任意空间坐标;m表示结构光的调制度,k
x
、k
y
、φ表示空间频率和初始相位。4.实现权利要求1至3任意一项所述方法的主动结构光照明的超分辨显微成像系统,其特征在于,所述系统包括光源模块、主动结构光照明光场加载模块、主动结构光照明光场生成模块以及荧光探测模块;所述光源模块,用于实现至少四个激光波长的控制,且可实现单波长独立照明,多个波长多色分时及同时照明;所述荧光探测模块,用于采集样本经激光激发的荧光图像;所述主动结构光照明光场生成模块,用于基于所述荧光图像生成主动结构光照明光
场;所述主动结构光照明光场加载模块,用于将生成的主动结构光照明光场加载到SIM成像系统中,完成主动结构光照明超分辨成像。5.根据...

【专利技术属性】
技术研发人员:梁永文刚陈晓虎金鑫王林波李辉
申请(专利权)人:中国科学院苏州生物医学工程技术研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1