一种压力侧排气的气冷涡轮动叶造型方法技术

技术编号:35179560 阅读:17 留言:0更新日期:2022-10-12 17:47
本发明专利技术的目的在于提供一种压力侧排气的气冷涡轮动叶造型方法,包括以下步骤:1、传统涡轮气动、冷却设计及叶片造型;2、全三维数值计算分析;3、减小各截面尾缘半径,调整尾缘附近叶片外型线;4、设计叶片压力侧短排气尾缘;5、构建压力侧排气尾缘截面结构;6、建立压力面尾缘叶片三维叶型;7、建立排气连接筋;8、全三维数值计算分析,得到涡轮动叶叶型损失、叶片温度数据,并与传统方法计算结果对比。本发明专利技术的压力侧排气动叶造型方法能够减小涡轮动叶尾缘厚度,从而降低涡轮动叶叶型损失,改善涡轮动叶气动性能,提高涡轮及整机机组效率,减少能源消耗,从根本上解决传统尾缘中间劈缝排气方式动叶尾迹损失大的难题。气方式动叶尾迹损失大的难题。气方式动叶尾迹损失大的难题。

【技术实现步骤摘要】
一种压力侧排气的气冷涡轮动叶造型方法


[0001]本专利技术涉及的是一种燃气轮机涡轮设计方法,具体地说是涡轮动叶造型方法。

技术介绍

[0002]燃气轮机具有功率密度大、起动速度快、燃料灵活等优点,广泛应用于工业及海上平台发电、天然气输送、石油化工及冶金等领域,也可作为飞机、船舶及地面交通工具的主要动力装置。
[0003]现代高性能燃气轮机为了获得更高的循环效率、更大的功率,燃气初温(涡轮进口温度)不断提高。随着涡轮进口温度的不断提高,其运行温度远远超过叶片材料的熔点温度,如目前已投入运行的最先进的燃气轮机涡轮进口燃气温度已经达到1600℃,先进航空发动机的涡轮进口温度更是超过1800℃。确保燃气轮机涡轮叶片在如此高温环境下能够长时间安全可靠地运行主要有三方面的措施:一是不断提高涡轮叶片材料的耐热等级,二是采用先进的冷却技术以降低叶片温度,三是不断提高涡轮叶片隔热涂层的隔热效果。近年来,涡轮进口温度的提高主要归功于涡轮冷却设计水平的提高,其次是由于高性能耐热合金与涂层材料的发展及生产制造工艺水平的进步。显然,涡轮叶片冷却对提高涡轮进口温度,改善燃气轮机性能起到至关重要的作用。
[0004]近年来,随着设计技术的不断进步以及计算流体力学的不断发展,全三维优化设计手段不断在涡轮冷却设计过程中得到应用,涡轮冷却设计体系、设计手段及方法不断丰富与完善,先进的设计技术及冷却结构不断推动着涡轮进口温度的提升,涡轮叶片冷却通道形状也更为复杂。为满足节能减排要求,现代燃气轮机不断追求性能的提升,要求涡轮冷却及气动性能不断改善,涡轮叶片寿命及可靠性不断提高。然而,基于传统涡轮叶片尾缘排气结构的冷却技术难以在降低叶片尾缘温度的同时改善涡轮叶片气动性能。
[0005]尽管国内外学者及科研人员在涡轮叶片高效冷却及气动设计方面已开展了大量的研究,对改善涡轮叶片冷却及气动性能、揭示涡轮叶片叶身内部冷却流动机理有了一定的认识,但是这些研究并没有关注在改善涡轮叶片叶身冷却的同时如何改善涡轮叶片叶型损失,也鲜有关于通过动叶尾缘压力侧排气结构形式降低涡轮叶片尾缘金属温度、改善涡轮动叶气动性能方面的报道。科研人员希望有一种既可以解决涡轮动叶尾缘难以冷却问题又可以有效改善涡轮动叶气动性能的先进尾缘结构形式造型方法。

技术实现思路

[0006]本专利技术的目的在于提供能解决传统尾缘中间劈缝排气方式动叶尾迹损失大等难题的一种压力侧排气的气冷涡轮动叶造型方法。
[0007]本专利技术的目的是这样实现的:
[0008]本专利技术一种压力侧排气的气冷涡轮动叶造型方法,其特征是:
[0009](1)对采用常规设计方法得到的涡轮叶片进行带冷却通道的流热耦合计算,得到涡轮动叶叶型损失、叶片金属温度数据,并将该数据结果作为改进为尾缘压力侧排气设计
计算结果的对比依据;
[0010](2)保持涡轮动叶叶片外型前缘型线、叶背型线及叶盆中前部型线不变;
[0011]调整涡轮动叶叶片各截面尾缘半径,减小涡轮动叶叶片各截面尾缘半径至0.5mm—1mm,并调整各截面叶背后部尾缘附近型线,得到调整后涡轮动叶叶片外型,将该尾缘定义为长排气尾缘;
[0012](3)保持涡轮动叶叶身中前部内部冷却通道及内部冷却结构不变,调整动叶叶片尾缘即长排气尾缘附近冷却排气结构,由减小半径后尾缘即长排气尾缘处沿叶背型线在L长度位置设置短排气尾缘;
[0013](4)测量并记录长排气尾缘和短排气尾缘之间的夹角A,调整长排气尾缘和短排气尾缘之间的距离L,得到压力侧排气尾缘叶栅截面结构;
[0014](5)保持涡轮动叶叶身中前部内部冷却通道及内部冷却结构不变,建立动叶叶片尾缘排气布置在压力侧的排气通道,将步骤(4)带内部冷却通道及冷却结构的叶片构造为新的带压力侧尾缘排气结构的全新动叶叶片;
[0015](6)在长排气尾缘和短排气尾缘之间沿叶片高度方向均匀布置间距为H的排气连接筋;
[0016](7)对采用压力侧排气气冷涡轮动叶造型设计方法得到的涡轮动叶进行带冷却通道的流热耦合计算,得到调整后的涡轮动叶叶型损失、叶片金属温度数据;
[0017](8)若步骤(7)得到的涡轮动叶叶型损失、叶片金属温度数据符合预定标准,则得到涡轮动叶叶型损失、叶片金属温度数据;
[0018](9)若步骤(7)得到的涡轮动叶叶型损失、叶片金属温度数据不符合预定标准,则重复执行步骤(2)~步骤(7),直至涡轮动叶叶型损失、叶片金属温度数据达到预定标准。
[0019]本专利技术还可以包括:
[0020]1、所述长排气尾缘、短排气尾缘、排气连接筋依次连接成一体。
[0021]2、所述长排气尾缘是顺着动叶叶片压力面型线顺延得到。
[0022]3、所述步骤(4)中长排气尾缘和短排气尾缘之间的距离L在5mm以内。
[0023]4、所述步骤(4)中长排气尾缘和短排气尾缘之间的夹角A在15度以内。
[0024]本专利技术的优势在于:本专利技术在充分利用常规涡轮气动、冷却及叶片造型方法及流程的基础上,通过动叶尾缘压力侧排气方式重新造型,并结合全三维计算技术,重新组织了涡轮动叶尾缘冷却空气流场结构与换热特性,相比传统涡轮动叶尾缘中间劈缝排气结构形式,本专利技术的压力侧排气动叶造型方法能够减小涡轮动叶尾缘厚度,从而降低涡轮动叶叶型损失,改善涡轮动叶气动性能,提高涡轮及整机机组效率,减少能源消耗,从根本上解决传统尾缘中间劈缝排气方式动叶尾迹损失大的难题。
[0025]采用本专利技术设计的涡轮动叶,在动叶尾缘相同冷却空气流量的前提下,较中间劈缝尾缘排气结构,在动叶尾缘温度不变的情况下,减小尾迹损失50%。
附图说明
[0026]图1为传统涡轮动叶尾缘中间劈缝排气结构示意图;
[0027]图2为本专利技术的流程图;
[0028]图3为本专利技术涡轮动叶尾缘排气结构示意图;
[0029]图4为本专利技术涡轮动叶尾缘排气结构截面示意图;
[0030]图5a为本专利技术的涡轮动叶尾缘排气结构尺寸及角度示意图,图5b为图5a的局部放大图;
[0031]图6为带有采用本专利技术设计的涡轮动叶尾缘排气结构的涡轮叶栅通道示意图。
具体实施方式
[0032]下面结合附图举例对本专利技术做更详细地描述:
[0033]结合图1

6,具体实施方式一:本实施方式方法具体过程为:
[0034]本专利技术压力侧排气的气冷涡轮动叶造型方法是基于现有的常规涡轮叶片气动设计、冷却结构设计和叶片造型方法。在常规涡轮叶片气动设计、冷却结构设计和叶片造型方法之后,得到未经压力侧排气处理的涡轮动叶叶片(如图1所示)。
[0035]如图1所示,动叶尾缘采用中间劈缝排气结构。
[0036]在此基础上还需经过以下步骤(见图2):
[0037]步骤一、利用全三维数值模拟软件(如CFX)对采用常规设计方法得到的涡轮叶片(见图1)进行带冷却通道的流热耦合计算,得到涡轮动叶叶型损失、叶片金本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种压力侧排气的气冷涡轮动叶造型方法,其特征是:(1)对采用常规设计方法得到的涡轮叶片进行带冷却通道的流热耦合计算,得到涡轮动叶叶型损失、叶片金属温度数据,并将该数据结果作为改进为尾缘压力侧排气设计计算结果的对比依据;(2)保持涡轮动叶叶片外型前缘型线、叶背型线及叶盆中前部型线不变;调整涡轮动叶叶片各截面尾缘半径,减小涡轮动叶叶片各截面尾缘半径至0.5mm—1mm,并调整各截面叶背后部尾缘附近型线,得到调整后涡轮动叶叶片外型,将该尾缘定义为长排气尾缘;(3)保持涡轮动叶叶身中前部内部冷却通道及内部冷却结构不变,调整动叶叶片尾缘即长排气尾缘附近冷却排气结构,由减小半径后尾缘即长排气尾缘处沿叶背型线在L长度位置设置短排气尾缘;(4)测量并记录长排气尾缘和短排气尾缘之间的夹角A,调整长排气尾缘和短排气尾缘之间的距离L,得到压力侧排气尾缘叶栅截面结构;(5)保持涡轮动叶叶身中前部内部冷却通道及内部冷却结构不变,建立动叶叶片尾缘排气布置在压力侧的排气通道,将步骤(4)带内部冷却通道及冷却结构的叶片构造为新的带压力侧尾缘排气结构的全新动叶叶片;(6)在长排气尾缘和短排气尾缘之间沿...

【专利技术属性】
技术研发人员:牛夕莹李国强林枫李宗全刘言明候隆安
申请(专利权)人:中国船舶重工集团公司第七零三研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1