【技术实现步骤摘要】
噪声抑制方法、装置、设备及存储介质
[0001]本专利技术涉及信号处理
,尤其涉及一种噪声抑制方法、装置、设备及存储介质。
技术介绍
[0002]在实际信号采集过程中,由于受系统内部与外界环境等因素的影响,常会导致所采集到的信号数据中包含有噪声干扰,从而影响对信号的分析与处理。传统的频域滤波方法能够将不同频段的信号与噪声分离,适用于平稳信号分析,而对于非平稳信号,则难以奏效。对于非平稳信号,可以采用小波降噪、经验模态分解降噪、集合经验模态分解以及互补集合经验模态分解等多种方法进行信号降噪。
[0003]但是,对于最新的互补集合经验模态分解,即CEEMD方法,其虽然可以解决经验模态分解降噪方式中存在的模态混叠问题,以及集合经验模态分解中的辅助白噪声残留与计算效率低等问题,但对CEEMD分解得到的各本征模态函数(IMF)分量,却难以有效区分噪声主导IMF分量与信号主导IMF分量。而对于噪声主导IMF分量与信号主导IMF分量分界点附近的IMF分量,有用信号和噪声更易混杂在一起,传统的CEEMD法难以将信号和噪声完全分 ...
【技术保护点】
【技术特征摘要】
1.一种噪声抑制方法,其特征在于,所述方法包括:获取原始含噪信号;利用互补集合经验模态分解算法将所述原始含噪信号分解为多个本征模态分量;任一所述本征模态分量具有时域特征信息;基于多个所述本征模态分量的时域特征信息,从多个所述本征模态分量中确定出第一分界分量,并利用所述第一分界分量将多个所述本征模态分量划分为至少一个噪声主导本征模态分量以及至少一个第一信号主导本征模态分量;利用互补集合经验模态分解算法将所述第一分界分量以及与所述第一分界分量相邻的第一信号主导本征模态分量分解为多个本征模态子分量,并根据多个所述本征模态子分量的时域特征信息,筛选出第二信号主导本征模态分量;将至少一个所述第一信号主导本征模态分量中的剩余信号主导本征模态分量和所述第二信号主导本征模态分量进行叠加,得到抑制噪声后的去噪信号;所述剩余信号主导本征模态分量,为至少一个所述第一信号主导本征模态分量中除去与所述第一分界分量相邻的第一信号主导本征模态分量的部分。2.根据权利要求1所述的方法,其特征在于,所述基于多个所述本征模态分量的时域特征信息,从多个所述本征模态分量中确定出第一分界分量之前,所述方法还包括:根据所述原始含噪信号中包含的噪声和信号之间的时域特征差异,从所述时域特征信息中确定出第一目标时域特征信息;所述基于多个所述本征模态分量的时域特征信息,从多个所述本征模态分量中确定出第一分界分量,包括:基于多个所述本征模态分量的第一目标时域特征信息,从多个所述本征模态分量中确定出所述第一分界分量。3.根据权利要求2所述的方法,其特征在于,所述利用所述第一分界分量将多个所述本征模态分量划分为至少一个噪声主导本征模态分量以及至少一个第一信号主导本征模态分量,包括:将阶数小于第一分界分量阶数的本征模态分量以及所述第一分界分量作为所述噪声主导本征模态分量;将阶数大于所述第一分界分量阶数的本征模态分量作为所述第一信号主导本征模态分量;所述阶数依据所述互补集合经验模态分解算法的分解次序确定。4.根据权利要求3所述的方法,其特征在于,所述本征模态子分量包括噪声本征模态子分量以及信号本征模态子分量,所述利用互补集合经验模态分解算法将所述第一分界分量以及与所述第一分界分量相邻的第一信号主导本征模态分量分解为多个本征模态子分量,包括:利用互补集合经验模态分解算法,将所述第一分界分量分解为多个噪声本征模态子分量;将阶数比所述第一分界分量阶数大1的第一信号主导本征模态分量分解为多个信号本征模态子分量。5.根据权利要求4所述的方法,其特征在于,任一所述本征模态子分量具有时域特征信息,所述根据多个所述本征模态子分量的时域特征信息,筛选出第二信号主导本征模态分
量,包括:针对任一所述噪声本征模态子分量,根据所述原始含噪信号中包含的噪声和信号之间的时域特征差异,从对应的时域特征信息中确定出对应的第二目标时域特征信息;根据多个所述噪声本征模态子分量的第二目标时域特征信息,确定出第二分界分量;针对任一所述信号本征模态子分量,根据所述原始含噪信号中包含的噪声和信号之间的时域特...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。