当前位置: 首页 > 专利查询>季华实验室专利>正文

微波等离子体化学气相沉积装置及系统制造方法及图纸

技术编号:34398727 阅读:17 留言:0更新日期:2022-08-03 21:35
本公开涉及一种微波等离子体化学气相沉积装置及系统。微波等离子体化学气相沉积装置包括:矩形波导,矩形波导包括多条微波传输路径,多条微波传输路径共用微波导入端口,多条微波传输路径的微波导出端口分立设置,微波导入端口用于将导入的微波经由对应的微波传输路径传导至对应的微波导出端口;等离子体反应腔体,等离子体反应腔体包括多个微波进入端口,微波导出端口与微波进入端口一一对应连通;多个电磁转换结构,电磁转换结构对应微波导出端口与微波进入端口的连通位置设置并与矩形波导接触设置。本公开的技术方案,有利于提高传导微波的能量容量,进而增加了等离子体反应腔体内的能量导入,提高了等离子体反应的均匀性。均匀性。均匀性。

【技术实现步骤摘要】
微波等离子体化学气相沉积装置及系统


[0001]本公开涉及微波等离子体
,特别涉及一种微波等离子体化学气相沉积装置及系统。

技术介绍

[0002]微波等离子体化学气相沉积(Microwave Plasma Chemical Vapor Deposition,MPCVD)技术是近几十年来发展起来的主要用于薄膜制造的新技术,以其产品质量高、可控性强、无污染等诸多优势在薄膜制造领域得到了广泛的应用。
[0003]目前,用于实现MPCVD技术的MPCVD装置结构,通过设置单一微波传输路径,将微波导入等离子体反应腔体内激发等离子体反应,单一微波传输路径限制了微波能量向等离子体腔体的导入,进而导致离子体反应腔体内的等离子体反应不均匀的问题。

技术实现思路

[0004]为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种微波等离子体化学气相沉积装置及系统,有利于提高传导微波的能量容量,进而增加了等离子体反应腔体内的能量导入,提高了等离子体反应的均匀性。
[0005]第一方面,本公开实施例提供了一种微波等离子体化学气相沉积装置,包括:
[0006]矩形波导,所述矩形波导包括多条微波传输路径,所述多条微波传输路径共用微波导入端口,所述多条微波传输路径的微波导出端口分立设置,所述微波导入端口用于将导入的微波经由对应的所述微波传输路径传导至对应的所述微波导出端口;
[0007]等离子体反应腔体,所述等离子体反应腔体包括多个微波进入端口,所述微波导出端口与所述微波进入端口一一对应连通;
[0008]多个电磁转换结构,所述电磁转换结构对应所述微波导出端口与所述微波进入端口的连通位置设置并与所述矩形波导接触设置。
[0009]在一些实施例中,所述微波导入端口用于通过传导至所述微波导入端口处的横电波并拦截传导至所述微波导入端口处的非横电波。
[0010]在一些实施例中,所述微波等离子体化学气相沉积装置还包括:
[0011]第一密封窗口,所述等离子体反应腔体的顶部设置有第一微波进入端口,所述第一密封窗口用于将所述第一微波进入端口密封并传导所述微波至所述等离子体反应腔体内;
[0012]对应所述第一微波进入端口设置有第一电磁转换结构,所述第一电磁转换结构相对于所述第一密封窗口悬空设置。
[0013]在一些实施例中,所述第一电磁转换结构包括第一同轴传输线,所述第一同轴传输线用于将由所述微波导入端口传输至所述第一同轴传输线处的横电波转换为横磁波;其中,所述横磁波通过所述第一密封窗口传导至所述等离子体反应腔体内并用于激发所述等离子体反应腔体内的等离子体反应。
[0014]在一些实施中,构成所述第一密封窗口的材料包括石英材料。
[0015]在一些实施例中,所述微波等离子体化学气相沉积装置还包括:
[0016]等离子体沉积基台,所述等离子体沉积基台位于所述等离子体反应腔体的底部区域,所述等离子体反应腔体的底部设置有对应所述等离子体沉积基台所在位置的第二微波进入端口;
[0017]对应所述第二微波进入端口设置有第二电磁转换结构,所述第二电磁转换结构与所述等离子体沉积基台接触设置。
[0018]在一些实施例中,所述微波等离子体化学气相沉积装置还包括:
[0019]第二密封窗口,所述第二密封窗口位于所述等离子体沉积基台与所述第二微波进入端口之间并环绕所述第二微波进入端口设置,所述第二密封窗口用于密封所述等离子体沉积基台与所述等离子体反应腔体之间的间隙并传导所述微波至所述等离子体反应腔体内。
[0020]在一些实施例中,所述第二电磁转换结构包括第二同轴传输线,所述第二同轴传输线用于将由所述微波导入端口传输至所述第二同轴传输线处的横电波转换为横磁波;其中,所述横磁波通过所述第二密封窗口传导至所述等离子体反应腔体内并用于激发所述等离子体反应腔体内的等离子体反应。
[0021]在一些实施例中,构成所述第二密封窗口的材料包括石英材料。
[0022]第二方面,本公开实施例还提供了一种微波等离子体化学气相沉积系统,包括微波产生装置和如第一方面提供的任一种微波等离子体化学气相沉积装置,所述微波产生装置用于产生所述微波并将所述微波传导至所述微波导入端口。
[0023]本公开实施例提供的微波等离子体化学气相沉积装置通过设置矩形波导包括多条微波传输路径,可实现由微波导入端口导入的微波通过多个微波传输路径传导。将电磁转换结构设置在微波导出端口与微波进入端口的连通位置处,当微波传输路径中传导的微波通过电磁转换结构时,电磁转换结构将微波传输路径中传导的微波转换为可激发等离子体反应的微波,进一步地,可激发等离子体反应的微波通过微波进入端口传导至等离子体反应腔体内,进一步地,激发等离子体反应腔体内的等离子体反应。由此,通过设置矩形波导包括多条微波传输路径,微波能量可通过多条微波传输路径传导至等离子体反应腔体内,解决了由于单一微波传输路径限制微波能量的导入,进而导致等离子体反应腔体内的等离子体反应不均匀的问题,有利于提高微波传输路径的能量容量,进而增加了等离子体反应腔体内的能量导入,解决了等离子体反应不均匀的问题。
附图说明
[0024]此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
[0025]为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0026]图1为本公开实施例提供的一种微波等离子体化学气相沉积装置的剖面结构示意图;
[0027]图2为本公开实施例提供的一种微波等离子体化学气相沉积装置的立体结构示意图;
[0028]图3为相关技术中提供的一种微波等离子体化学气相沉积装置的剖面结构示意图;
[0029]图4为本公开实施例提供的一种微波等离子体化学气相沉积系统的结构示意图。
具体实施方式
[0030]为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
[0031]在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
[0032]化学气相沉积技术是以包含有薄膜沉积所需元素的混合气体为源气体,在反应腔中进行一系列复杂的基元反应,并在衬底表面进行一系列的表面反应,最终在衬底表面产生薄膜。
[0033]目前,化学气相沉积技术常常用来制备碳材料,并且碳材料有着多种存在形式,例如金刚石、石墨、石墨烯和碳纳米管等。其中金刚石的碳原子是正四面体排布的,石墨的碳原子是蜂巢式排布的,而石墨烯则是只本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种微波等离子体化学气相沉积装置,其特征在于,包括:矩形波导,所述矩形波导包括多条微波传输路径,所述多条微波传输路径共用微波导入端口,所述多条微波传输路径的微波导出端口分立设置,所述微波导入端口用于将导入的微波经由对应的所述微波传输路径传导至对应的所述微波导出端口;等离子体反应腔体,所述等离子体反应腔体包括多个微波进入端口,所述微波导出端口与所述微波进入端口一一对应连通;多个电磁转换结构,所述电磁转换结构对应所述微波导出端口与所述微波进入端口的连通位置设置并与所述矩形波导接触设置。2.根据权利要求1所述的微波等离子体化学气相沉积装置,其特征在于,所述微波导入端口用于通过传导至所述微波导入端口处的横电波并拦截传导至所述微波导入端口处的非横电波。3.根据权利要求1或2所述的微波等离子体化学气相沉积装置,其特征在于,还包括:第一密封窗口,所述等离子体反应腔体的顶部设置有第一微波进入端口,所述第一密封窗口用于将所述第一微波进入端口密封并传导所述微波至所述等离子体反应腔体内;对应所述第一微波进入端口设置有第一电磁转换结构,所述第一电磁转换结构相对于所述第一密封窗口悬空设置。4.根据权利要求3所述的微波等离子体化学气相沉积装置,其特征在于,所述第一电磁转换结构包括第一同轴传输线,所述第一同轴传输线用于将由所述微波导入端口传输至所述第一同轴传输线处的横电波转换为横磁波;其中,所述横磁波通过所述第一密封窗口传导至所述等离子体反应腔体内并用于激发所述等离子体反应腔体内的等离子体反应。5.根据权利要求4所述的微波等离子体化学气相沉积装置,其特征...

【专利技术属性】
技术研发人员:李嘉锋陈浩侯少毅
申请(专利权)人:季华实验室
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1