一种质子交换膜氢燃料电池动力系统的给料控制方法技术方案

技术编号:34097475 阅读:14 留言:0更新日期:2022-07-11 22:39
本发明专利技术涉及一种质子交换膜氢燃料电池动力系统的给料控制方法,属于氢燃料电池技术领域,包括:(1)分别监测氢气供气侧和氧气供给侧压力,(2)得出氢气供气侧和氧气供气侧实际压差,(3)得出实际压差与目标压差的偏差值;(4)整车控制器VCU根据驾驶员踏板扭矩需求、摩擦损失扭矩及辅件扭矩需求计算出电机需求扭矩,然后通过MAP对应出需求电流,即目标电流;(5)控制器根据目标电流计算出需求的氢气进气量及空气进气量;(6)根据需求的空气进气计算出空压机转速及背压阀开度目标值;根据当前压差值与目标偏差值的偏差计算出氢气供给侧进气调节阀开度目标;本发明专利技术可以有效避免质子交换膜两侧压差突变,延长质子交换膜的使用寿命。延长质子交换膜的使用寿命。延长质子交换膜的使用寿命。

【技术实现步骤摘要】
一种质子交换膜氢燃料电池动力系统的给料控制方法


[0001]本专利技术属于氢燃料电池
,具体的说,涉及一种质子交换膜氢燃料电池动力系统的给料控制方法。

技术介绍

[0002]氢燃料电池动力系统通过电化学反应将氢能直接转化为电能,具备清洁、高效、燃料来源广泛等优点,被认为是面向未来的终极清洁能源。
[0003]质子交换膜氢燃料电池具有动力响应迅速,工作温度低的特点,非常适合用在新能源汽车上使用,质子交换膜燃料电池是目前应用最广泛的氢燃料电池解决方案。
[0004]质子交换膜氢燃料电池动力系统包括电堆、氢气供应系统、空气供应系统、冷却系统和控制系统。氢气供应系统主要包括储氢罐、压力调节阀、加湿器、进气调节阀、压力传感器等子系统,氢气供应系统主要通过进气调节阀控制进气量及进气压力。空气供应系统主要包括空气滤清器、空气流量计、空压机、空冷器及背压阀等子系统,空气供给系统通过调节空压机的转速及背压阀开度控制空气进气量。
[0005]氢燃料电池动力系统的反应物为氢气和氧气,化学反应公式为:2H2 + O2 = 2H2O根据化学反应式配比关系,其氢气跟氧气的输入关系为2:1,故动力系统氢气和氧气的给料方式也应是按照2:1的方式给料。
[0006]目前的动力系统,通常采用的氢气供给和氧气供给是单独控制的,空气供给侧是通过空压机及背压阀控制,而氢气供给侧是通过进气调节阀控制,这两种控制方式的响应速度有较大差异,这种控制方案会导致质子交换膜两侧压差容易突变。由于质子交换膜本身在压力作用下会导致气体渗透(H2穿透到阴极侧导致电压压降;O2穿透到阳极导致“局部缺氢”),这对质子交换膜会造成不可逆的损伤,影响其使用寿命。

技术实现思路

[0007]为了克服
技术介绍
中存在的问题,本专利技术提供了一种质子交换膜氢燃料电池动力系统的给料控制方法,通过对空气侧的进气压力和氢气侧的进气压力进行测量,根据二者的实际差压与目标差压的偏差,进行有效干预、调节,进而有效缓解质子交换膜两侧压差突变所造成的质子交换膜损坏。
[0008]为实现上述目的,本专利技术是通过如下技术方案实现的:所述的质子交换膜氢燃料电池动力系统的给料控制方法包括以下步骤:(1)收集氢气供给系统的进气压力P1和空气供给系统的进气压力P2;(2)计算出实际压差ΔPact = P2

P1;(3)整车控制器VCU根据驾驶员踏板扭矩需求、摩擦损失扭矩及辅件扭矩需求计算出电机需求扭矩,然后通过MAP对应出需求电流,即目标电流;(4)控制器根据目标电流计算出需求的氢气进气量及空气进气量;
(5)根据需求的空气进气计算出空压机转速及背压阀开度目标值;根据当前压差值与目标偏差值的偏差计算出氢气供给侧进气调节阀开度目标。
[0009]进一步的,步骤(5)中,空气侧通过修改空压机转速及背压阀开度来达到目标进气量(即在实验台架上将每个需求进气量的点通过实验找到最佳的空压机转速及背压阀开度,写入MAP),但是由于空压机转速响应相对背压阀开度的响应较慢,故实际进气量会有一定时长(取决于空压机物理特性)的滞后于目标进气量。
[0010]本专利技术的有益效果本专利技术的方法,结合MAP,可以很大程度降低控制器的运行负荷。
[0011]本专利技术能有效降低电堆损坏的风险。
[0012]本专利技术的技术方案,可以降低系统方案中空压机的技术标准,降低采购成本。
附图说明
[0013]图1是本专利技术的氢燃料电池动力系统结构图;图2是本专利技术的氢燃料电池动力系统控制流程图。
具体实施方式
[0014]为了使本专利技术的目的、技术方案和有益效果更加清楚,下面将对本专利技术的优选实施例进行详细的说明,以方便技术人员理解。
[0015]实施例1在氢气供气系统和空气供给系统输入氢燃料电池电堆的管道上分别安装压力传感器。
[0016]质子交换膜氢燃料电池动力系统的给料控制方法包括以下步骤:(1)收集氢气供给系统的进气压力P1和空气供给系统的进气压力P2;(2)计算出实际压差ΔPact = P2
ꢀ–ꢀ
P1;(3)整车控制器VCU根据驾驶员踏板扭矩需求、摩擦损失扭矩及辅件扭矩需求计算出电机的需求扭矩,然后通过MAP对应出需求电流,即目标电流;需求扭矩 = 驾驶员踏板扭矩需求 + 摩擦损失扭矩 + 辅件扭矩需求扭矩即电机需要给出的扭矩,电机的扭矩与工作电流有线性关系,可以通过插值曲线获得目标电流(4)VCU控制器根据氢燃料电池的目标电流计算出需求的氢气进气量及空气进气量。
[0017]目标电流即氢燃料电池和动力电池共同输出的电流,要基于动力电池剩余电量及目标电流计算得出氢燃料电池的目标电流;氢燃料电池的目标电流为氢燃料电池的输出电流,电流的大小由反应物空气及氢气进气量决定,这个对应关系由氢燃料电池电堆的物理特性决定。
[0018](5)根据需求的空气进气计算出空压机转速及背压阀开度目标值;根据当前压差值与目标偏差值的偏差计算出氢气供给侧进气调节阀开度目标。
[0019]空气侧通过修改空压机转速及背压阀开度来达到目标进气量(由于空气侧压力及进气量跟空压机转速及背压阀开度为耦合关系,无法通过修改一个参数而不影响另一个参
数,故该处的实现方式为通过MAP实现,即在实验台架上将每个需求进气量的点通过实验找到最佳的空压机转速及背压阀开度,写入MAP),但是由于空压机转速响应相对背压阀开度的响应较慢,故实际进气量会有一定时长(取决于空压机物理特性)的滞后于目标进气量。
[0020]控制器会根据目标电流计算出需求的氢气及空气进气量(通过查MAP即可实现),然后空气供给侧通过调节空压机转速以及背压阀进行响应以达到目标空气进气量,由于空压机转速非常高(通常10万转级别),其对进气量的相应速度较慢且其流量及转速点需要进行控制否则将出现喘振现象,影响零部件寿命,故其实际输入空气进气量并不严格按照需求进气量进行输入,而氢气侧通过阀进行控制,其进气量响应速度快,此时如果氢气侧按照实际需求值进行输入,则可能导致阳极与阴极两侧压差过大,由于质子交换膜本身在压力作用下会导致气体渗透(H2穿透到阴极侧导致电压压降;O2穿透到阳极导致“局部缺氢”),故氢气供给和氧气供给不能是单独控制的。
[0021]质子交换膜一般只有几十微米,为一层薄膜,其渗透率随着阴极阳极的压差而线性增加,电堆阳极侧通过阀进行控制,其执行速度为毫秒级的,电堆阴极侧通过空压机控制,而空压机每20000转的升降速时间为2

3秒,所以在电堆快速的负载变化时,会出现阴极阳极压差突然增大的情况,燃料电池发动机高压系统一般为2

3.2bar,所以电堆中可能出现的压差范围为0
ꢀ–ꢀ
2.2bar(减去大气压),本专利技术由于阳极阀的高响应速率,其压差变化范围大幅降低,从而降低渗透率。
[0022]最后说明的是,以上优选实施例仅用于说明本专利技术的技术方案而非限制,尽管通过上述优选实施例已经对本专利技术进行了本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种质子交换膜氢燃料电池动力系统的给料控制方法,其特征在于包括以下步骤:(1)收集氢气供给系统的进气压力P1和空气供给系统的进气压力P2;(2)计算出实际压差ΔPact = P2
ꢀ–ꢀ
P1;(3)整车控制器VCU根据驾驶员踏板扭矩需求、摩擦损失扭矩及辅件扭矩需求计算出电机需求扭矩,然后通过MAP对应出需求电流,即目标电流;(4)控制器根据目标...

【专利技术属性】
技术研发人员:刘涛周厅琳王智晶范会军
申请(专利权)人:苏州国方汽车电子有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1