一种巨磁电阻线性传感器实现方法技术

技术编号:32914013 阅读:12 留言:0更新日期:2022-04-07 12:04
一种巨磁电阻线性传感器实现方法,属于电子材料与元器件技术领域。首先,在压电基片的上下表面制备导电层,作为对压电基片施加电压的上电极和下电极;然后,在诱导磁场下、采用薄膜沉积工艺在上电极表面依次沉积第一隔离层、反铁磁层、第二铁磁层、第二隔离层、第一铁磁层和保护层;最后,在压电基片的上下电极施加电压,使反铁磁层的磁矩转动,并带动第二铁磁层的磁矩共同转动,则第一铁磁层和第二铁磁层的磁矩呈现夹角,完成巨磁电阻线性传感器的制备。本发明专利技术巨磁电阻线性传感器实现方法,具有结构简单、工艺难度低、低功耗等优点。低功耗等优点。低功耗等优点。

【技术实现步骤摘要】
一种巨磁电阻线性传感器实现方法


[0001]本专利技术属于电子材料与元器件
,涉及磁传感技术,具体为基于应变调控反铁磁磁矩从而带动磁性层磁矩改变,最终实现巨磁电阻线性传感器的方法。

技术介绍

[0002]巨磁电阻传感器基于巨磁电阻效应,这一效应可以通过自旋阀多层膜结构实现,其基本结构为铁磁层1(自由层)/隔离层/铁磁层2(固定层)/反铁磁层/基底。在该结构中,通过外磁场调控磁性层取向,可得到不同的电阻变化,从而利用不同电阻值呈现的电压响应特性实现对外磁场的探测。其中,在外场作用下铁磁层1的磁矩随外场转动,称为自由层;而铁磁层2和反铁磁层发生了耦合作用,其磁矩被反铁磁层钉扎在一定的方向,只有当外场大于反铁磁层与铁磁层2的钉扎场时,铁磁层2的磁矩才会随外场方向发生转动,因而铁磁层2称为固定层。在磁矩转动的过程中,当自由层和固定层的磁矩相互平行时,整个自旋阀结构呈现低电阻态,而当自由层和固定层的磁矩互相反平行时,整个结构呈现高电阻态。一般情况下,零场下铁磁层1与铁磁层2的磁矩沿同一方向(平面),其对应的磁阻曲线为台阶式,该种形式的响应曲线一般用于磁存储。而在巨磁电阻线性传感器中,为实现对感应信号的有效探测,要求其巨磁电阻响应曲线应对外磁场的变化呈现线性响应。为实现这一要求,自旋阀巨磁电阻结构中的自由层和固定层的磁矩在零场下应有一定的夹角,且随着该夹角增大到90度,在巨磁电阻传感器中将获得最优的线性探测区间。但在一般的磁控溅射沉积的自旋阀结构中,自由层和固定层的磁矩在零场下是互相平行的状态,为了能够让其实现90度的最优取向,通常采用永磁铁偏置、特殊电路产生磁场偏置、相互垂直的磁场下分别沉积自由层和固定层等方式实现。但从以上的方法来看,无论哪一种方式都涉及到相同的问题,就是沉积方式带来的附加的工艺处理和偏置结构的制备,随之而来就是工艺难度的大大增加和由于偏置结构参数的尺寸问题,使得器件无法做到小型化、微型化。因此,如果能够在巨磁电阻薄膜按照通常的制备方法制备完成后,采用一定的方法使其自旋阀中自由层和固定层的磁矩之间的夹角呈一定角度,那么将大大降低线性磁阻传感器的制备难度,并且有助于线性磁传感器的发展。本专利技术正是着手解决这种需求。

技术实现思路

[0003]本专利技术的目的在于,针对
技术介绍
存在的缺陷,提出了一种巨磁电阻线性传感器实现方法。本专利技术巨磁电阻线性传感器,通过应变材料引入应力,改变巨磁电阻薄膜中反铁磁层磁矩取向,由于反铁磁层和第二铁磁层之间的耦合作用,使第二铁磁层的磁矩方向也随之发生转动,这样第一铁磁层和第二铁磁层的磁矩会呈现一定夹角,即可实现巨磁电阻效应线性传感器;当施加的应力足够大时,第二铁磁层的磁矩方向可转动至与初始方向垂直,第一铁磁层和第二铁磁层的磁矩在零场时可以呈现90度,实现巨磁电阻效应线性传感器的最优线性探测区间。
[0004]为实现上述目的,本专利技术采用的技术方案如下:
[0005]一种巨磁电阻线性传感器实现方法,其特征在于,包括以下步骤:
[0006]步骤1、以压电基片作为巨磁电阻线性传感器的基片,在压电基片的上下表面制备导电层,作为对压电基片施加电压的上电极和下电极,得到带上下电极的压电基片1;
[0007]步骤2、在诱导磁场H下、采用薄膜沉积工艺在上电极表面依次沉积第一隔离层2、反铁磁层3、第二铁磁层4、第二隔离层5和第一铁磁层6,得到第一隔离层2/反铁磁层3/第二铁磁层4/第二隔离层5/第一铁磁层6组成的巨磁电阻薄膜层;
[0008]步骤3、在步骤2得到的第一铁磁层6上沉积保护层;
[0009]步骤4、在压电基片的上下电极施加电压,使反铁磁层的磁矩转动,并带动第二铁磁层的磁矩共同转动,则第一铁磁层和第二铁磁层的磁矩呈现一定夹角,完成巨磁电阻线性传感器的制备。
[0010]进一步的,步骤1所述压电基片为PMN

PT(铌镁酸铅-钛酸铅)、PZN

PT(铌锌酸铅-钛酸铅)等材料,厚度为0.2~0.8mm;所述上电极和下电极的电极材料为Cu、Ag、Au等。
[0011]进一步的,步骤2所述第一铁磁层和第二铁磁层为磁致伸缩系数不为0的材料或磁致伸缩系数为0的材料,所述磁致伸缩系数不为0的材料可以选择Ni、Fe、Co、Ni合金、Fe合金、Co合金等,所述磁致伸缩系数为0的材料可以选择Ni
77
Fe
23
等;所述第一铁磁层的厚度为12~15nm,所述第二铁磁层的厚度为8~15nm。
[0012]进一步的,步骤2所述第一隔离层和第二隔离层为Cu、Ta等非磁性金属;所述第二隔离层的厚度为1.8~5nm。
[0013]进一步的,所述第一隔离层的作用是保证应力只传递至反铁磁层而不到达第二铁磁层,不引起第二铁磁层磁矩的改变。因此,当第一铁磁层和第二铁磁层为磁致伸缩系数为0的材料时,所述第一隔离层可以去掉;
[0014]当第一铁磁层和第二铁磁层为磁致伸缩系数不为0的材料时,所述第一隔离层的厚度应足够厚,以确保应力只传递至反铁磁层而不到达第二铁磁层。具体地,当第一铁磁层和第二铁磁层为Ni
80
Fe
20
时,第一隔离层的厚度为105nm;当第一铁磁层和第二铁磁层为Ni
80
Co
20
时,第一隔离层的厚度为230nm。
[0015]进一步的,步骤2所述反铁磁层为IrMn、RhMn、NiO、FeMn等反铁磁材料,厚度为10~15nm。
[0016]进一步的,步骤3所述保护层为Ta等非磁性金属,厚度为5~10nm。
[0017]进一步的,步骤4所述压电基片的上下电极施加大小为10kV/cm电压,可实现第一铁磁层和第二铁磁层的磁矩呈90度。
[0018]本专利技术提供的一种巨磁电阻线性传感器实现方法,其原理为:
[0019]本专利技术步骤3制备得到的巨磁电阻复合薄膜,第一铁磁层和第二铁磁层的磁矩在测试磁场为零时是平行的。为了实现线性巨磁电阻传感器对这两层磁矩取向的要求(第一铁磁层和第二铁磁层的磁矩呈一定夹角),本专利技术步骤4在压电基片的上电极和下电极施加电压,沿压电基片晶轴方向会产生一应力,此时,若选用的反铁磁材料磁滞伸缩系数λ
s
为正,则薄膜沉积过程中需沿压电基片的长轴方向施加诱导磁场,使交换偏置场初始取向、第二铁磁层的磁矩、第一铁磁层的磁矩取向均沿压电基片的长轴方向,在压电基片应力的作用下反铁磁材料会产生负应变,使反铁磁层磁矩发生转动,进而带动第二铁磁层的磁矩转动,而第一铁磁层的磁矩不发生转动,这样第一铁磁层和第二铁磁层的磁矩就会呈现一定
夹角,当施加的应力足够大时(10kV/cm),第二铁磁层的磁矩可以转动至压电基片的短轴方向,此时第一铁磁层和第二铁磁层的磁矩呈90度。若选用的反铁磁材料磁滞伸缩系数λ
s
为负,则薄膜沉积过程中需沿压电基片的短轴方向施加诱导磁场,使交换偏置场初始取向、第二铁磁层的磁矩、第一铁磁层的磁矩取向均沿压电基片的短轴方向本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种巨磁电阻线性传感器实现方法,其特征在于,包括以下步骤:步骤1、以压电基片作为巨磁电阻线性传感器的基片,在压电基片的上下表面制备导电层,作为对压电基片施加电压的上电极和下电极,得到带上下电极的压电基片;步骤2、在诱导磁场下、采用薄膜沉积工艺在上电极表面依次沉积第一隔离层、反铁磁层、第二铁磁层、第二隔离层和第一铁磁层;步骤3、在步骤2得到的第一铁磁层上沉积保护层;步骤4、在压电基片的上下电极施加电压,使反铁磁层的磁矩转动,并带动第二铁磁层的磁矩共同转动,则第一铁磁层和第二铁磁层的磁矩呈现夹角,完成巨磁电阻线性传感器的制备。2.根据权利要求1所述的巨磁电阻线性传感器实现方法,其特征在于,步骤1所述压电基片为PMN

PT、PZN

PT,厚度为0.2~0.8mm。3.根据...

【专利技术属性】
技术研发人员:唐晓莉马成鑫姜杰
申请(专利权)人:上海麦歌恩微电子股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1