【技术实现步骤摘要】
基于MES的智能工厂产品质量监控方法及系统
[0001]本专利技术涉及机器视觉
,具体涉及基于MES的智能工厂产品质量监控方法及系统。
技术介绍
[0002]MES系统是一套面向制造企业车间执行层的生产信息化管理系统,该系统采用大数据引擎对生产过程中的生产管控数据进行采集、存储和分析,实现智能化的工厂生产监控任务。在现代的工厂中,例如生产塑料制品、织物、纸制品等的工厂中,为了更好的监控整个生产过程,提高生产效率,优化生产原料、生产设备、产品成品的管理,很多都引入了MES系统。
[0003]产品的生产过程中,由于设备的控制不合理会导致有些产品的质量出现各种各样的问题。例如注塑件的生产过程中,颗粒混合时的温度、注塑时的压力等不合理时会导致注塑件的色差和结构缺失等缺陷,造成生产资源的浪费。为了及时发现产品的质量问题,往往需要对产品质量进行监控。现有的质量监控方法包括人为的质量抽检、基于机器视觉和人工智能的质量抽检方法、客户使用过程中的质量反馈等,但是对生产样品进行抽检时,每一批的抽检样品,出现质量问题的概率不同,抽检 ...
【技术保护点】
【技术特征摘要】
1.基于MES的智能工厂产品质量监控方法,其特征在于,该方法包括以下步骤:获取智能工厂在生产过程中的生产参数及其对应产品的质检结果,由每个产品对应的生产参数组成一个生产向量;所述质检结果包括至少一种第一目标缺陷和一种第二目标缺陷,所述第一目标缺陷和所述第二目标缺陷为不同种类的目标缺陷;选取出含有同一目标缺陷的目标产品,根据所述目标产品对应的生产向量获取该目标缺陷的多个关注特征以及对每个关注特征的关注度;所有关注特征组成该目标缺陷的关注特征集合;将所述第一目标缺陷和所述第二目标缺陷的关注特征相互匹配,组成匹配对;根据所述匹配对的相似度和对应的关注程度的差异计算两种目标缺陷对该匹配对的第一区分度;基于所述第一区分度的大小筛选出这两种目标缺陷的区分特征对;将所有所述区分特征对中关注度更小的关注特征在对应的关注特征集合中去除,得到更新特征集合;获取所述关注特征集合以及所述更新特征集合的熵差,进而获取所述第一目标缺陷和所述第二目标缺陷之间的修正合理性;以所有不同种类的目标缺陷为节点、以所述修正合理性作为对应的边权值获取图数据;将所述图数据进行分类,计算每个类别中每个关注特征相对于其他关注特征的第二区分度;并根据所述第二区分度的大小对每个类别中的关注特征进行筛选,得到每种目标缺陷的准确关注特征;获取所述第一目标缺陷对应的每个准确关注特征的取值范围,将新产品的生产向量投影到所述准确关注特征上,当投影结果都在对应的所述取值范围内时,该新产品会出现第一目标缺陷;同理判断该新产品是否会出现其他目标缺陷。2.根据权利要求1所述的方法,其特征在于,所述关注特征的获取步骤包括:将所述目标产品对应的生产向量进行分类,保留包含元素最多的类别作为主要类别;对所述主要类别进行主成分分析,每个主成分方向作为一个关注特征。3.根据权利要求2所述的方法,其特征在于,所述关注度的获取过程为:以所述主成分方向的特征值作为所述关注特征的关注度。4.根据权利要求1所述的方法,其特征在于,所述匹配对的组成过程为:利用匹配算法将所述第一目标缺陷和所...
【专利技术属性】
技术研发人员:翁长征,
申请(专利权)人:苏州捷布森智能科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。