金属容器的开裂式安全阀制造技术

技术编号:3255236 阅读:156 留言:0更新日期:2012-04-11 18:40
一种开裂式安全阀,采用冷压接法接合、密封金属箔,以堵塞开在金属容器上的通气孔,当容器内部的压力上升至超过规定值时,金属箔开裂,以发挥防爆功能。(*该技术在2016年保护过期,可自由使用*)

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及一种这样的开裂式安全阀,它设置在可充电电池(二次电池)等的金属容器(下面,简称为容器)上,当异常时释放在容器内部产生的压力,以防止容器的变形或爆炸,从而防止对人体的危害或器械的损坏等。
技术介绍
近年来正在迅速普及的锂离子电池等高性能可充电电池以小型轻量、大容量为特长,广泛应用在尤其是移动电话或笔记本型计算机等便携式器械中。但是,这些高性能可充电电池,其电池内部的能量密度高,有时也采用可燃性的有机溶剂作为电解液使用,因此当电池内部一旦出现短路或过充电等异常时,在电池容器内或产生可燃性气体,或出现着火,容器的内部压力上升成为危险的状态。当容器的内部压力一旦超过耐压强度,则容器的变形增大,并在超过耐压极限时将发生爆炸。在使用便携式器械时,如果发生这样的事故,则不可避免地对人体产生重大危害或损坏器械。以避免这样的危险为目的,人们使用了一种开裂式安全阀,当容器的内部压力上升到超过规定值的时候,该开裂式安全阀便使容器的一部分裂开形成开口部分,释放内部压力。以往所使用的开裂式安全阀有冲压式安全阀和金属箔式安全阀,是根据用途选择使用的。冲压式安全阀具有这样的构造即采用具有楔形形状的齿端为V字形截面的冲压头冲压容器的某一部分而形成圆形等轮廓形状的开裂沟,当容器的内部压力上升到超过规定值时,开裂沟底部的薄壁部分便裂开,释放内部压力。冲压式安全阀的优点是加工简单、价格便宜。但是,在采用冲压头进行加工时,由于产生于冲压头的齿端的裂纹残留在加工后的薄壁部分,当把薄壁部分的厚度加工得很薄时,裂纹穿透薄壁部分,成为发生泄漏的原因。冲压式安全阀的开裂压力由开裂沟所包围的受压面积和开裂沟底部的薄壁部分的厚度所决定,所以为了把安全阀设置在小型容器中,在减小受压面积的同时控制开裂压力的上升,这就需要把薄壁部分的厚度做得更薄。但是,如果把薄壁部分的厚度加工得更薄,则因泄漏所致的不合格率将增加,所以难以实现冲压式安全阀的小型化。金属箔式安全阀的构造是,接合金属箔进行密封以堵塞容器的通气孔,当出现异常容器的内部压力超过规定值时,金属箔裂开释放内部压力。在以往的金属箔式安全阀中用焊接法进行金属箔的接合,由于用焊接法可以接合的金属箔厚度的下限值,与冲压加工的开裂沟底部的薄壁部分厚度的下限值相比较为其1/2以下,故在这一点上金属箔式安全阀易于实现小型化。但是,采用焊接法进行金属箔接合,存在有焊接加工时特有的易穿孔问题,以及用焊接法接合薄金属箔进行密封时的技术性困难,此外需要高额的设备投资等,所以存在质量方面的不稳定性,以及成本高等缺点。专利技术的公开在本专利技术中开发了一种采用冷压接法接合金属箔做为安全阀,以堵塞容器的通气孔的利用冷压接法的金属箔式安全阀(下面,简称为本安全阀)。冷压接法,是一种在常温状态下使用冷压接模具对2个金属部件的接合部加压进行接合的加工方法。接合的原理如下利用冷压接模具产生的压力使接合部发生塑性变形,由接触面间的摩擦使双方的接触面上露出新生面,在该状态下继续加压和保持使得发生原子间的结合,由此接合2个部件。迄今为止,在对用于金属箔式安全阀的、厚度在0.3mm以下的金属箔进行冷压接的情况下,由于在冷压接加工中所承受的加压力的作用,存在着发生金属箔断裂、出现裂纹、成为泄漏原因等一类问题。然而,在本专利技术中对于冷压接模具的齿端形状、接合部的形状,与金属箔和容器的材料相适合的表面处理或热处理,进而对冷压接加工时的加压速度和在下止点位置的保持时间等,及冷压接加工中的全部条件进行了重新评价并反复进行了试验。其结果是,用冷压接法进行了以往被认为是做不到的厚度直至0.01mm的金属箔的接合,并成功地应用于金属箔式安全阀中。本安全阀被确认具有众多的优越特性如与利用激光束焊接法加工的以往的金属箔式安全阀相比较其气体密封性好,较少发生密封不良现象;加工时间被缩短,加工成本可以抑制在1/5左右;此外,容易实现作为安全阀最为重要的恰当的开裂压力,并且能够减小大量生产时开裂压力的误差等。附图的简单说明附图说明图1为电池容器盖侧(方向)的平面图。图2为电池容器侧面的截面图。图3为冷压接前的金属箔的侧面图。图4为盖的截面图。图5为冷压接前的盖、金属箔和冷压接模具的截面图。图6为冷压接中的盖、金属箔和冷压接模具的截面图。图7为冲压式安全阀的截面图。图8为冷压接后的金属箔的薄壁部的截面放大图。图9为容器内部压力未达到规定值时盖的截面图。图10为容器内部压力达到规定值时金属箔的穹面反向时的状态图。图11为金属箔的穹面刚一反向后,薄壁部分开裂时的状态图。对图中符号说明如下1.盖2.金属箔3.电池罐 4.通气孔5.薄壁部分6.上冲压头7.下冲压头8.电极引出口9.接合部10.冲压式安全阀的受压部11.穹面12.薄壁部分厚度13.开裂沟实施专利技术的最佳形式列举实例对本专利技术进行说明。在本实例中,可充电式锂离子电池用的金属容器上设置了规格为当内部压力达到18kg/cm2时便开裂的本安全阀,而上述金属容器是在由A3003铝合金制的方筒型电池罐3的开口部上接合同种材料的盖1而构成的。图1及图2所示的电池容器,是由板厚度为0.8mm的A3003铝合金制的、外形尺寸34mm×6mm×47mm的电池罐3,和板厚度0.8mm的A3003铝合金制的外形尺寸与电池罐3的34mm×6mm的开口部的内侧尺寸相等的盖1构成的。在盖1的中央配置有电极引出口8,在该电极引出口8与长度方向的端面之间开有Φ1.5mm的通气孔4,盖1和电池罐3用焊接法接合起来。在该通气孔4的外侧,冷压接合、并密封有板厚度0.03mm的A3003制的金属箔2。为方便说明,均将图1-图12所示的盖1、金属箔2、电池罐3、薄壁部分5、接合部9、薄壁部分厚度12、开裂沟13等的厚度,以及图4中的通气孔4的直径进行了夸大,而在图2中与本专利技术的说明无关的电池的内容物全部省略。图3示出金属箔2。冷压接该金属箔2(在盖1上)以便堵塞开在盖1上的Φ1.5mm的通气孔4,便构成了安全阀。此外,将该盖1插进电池罐3的开口部,然后用激光束焊接法接合,成为密闭容器。在本实例中,以试验本安全阀的气体的密封性和开裂压力为目的,制作了100个未填充内容物的容器,并在电池罐3的底面打有开裂实验用的孔。气体密封性试验,是先给做成的容器施加15秒钟的8.0kg/cm2的空气压力,并在该期间内用漏气测试器测量压力的变化以判断有无泄漏。结果是没有发生泄漏。开裂压力试验是对结束了气体密封性试验后的样品而实施的。试验方法是,以0.3kg/sec的加压速度施加流体静压力,并测量出金属箔开裂时的压力。其结果,金属箔2的开裂是从冷压接加工时形成的接合部9附近的薄壁部分5开始的;而开裂压力的测定结果是,即使是在应该设置在本实施例这样的小型电池容器上的、实施了小型化的情况下,相对于目标值18kg/cm2(开裂压力)在15-20kg/cm2的范围内,结果是良好的。沿着通气孔4的中心线,用与盖1的面相垂直的平面切断被冷压接的盖1和金属箔2,在用显微镜观察接合部9及薄壁部分5等的板厚的同时调整冷压接加工时的上冲压头6和下冲压头7的齿端间距及其他的各类条件,由此来寻找薄壁部5的厚度下限,其结果可以将该下限调整到0.005mm。由于在本安全阀中可以稳定地把薄壁部本文档来自技高网...

【技术保护点】

【技术特征摘要】
【国外来华专利技术】

【专利技术属性】
技术研发人员:今野启一铃木一穗今野裕
申请(专利权)人:索尼株式会社株式会社今野工业所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1