【技术实现步骤摘要】
推荐概率预测方法及装置、计算机存储介质和电子设备
[0001]本公开涉及计算机
,更具体地,涉及一种推荐概率预测方法、推荐概率预测装置、计算机存储介质和电子设备。
技术介绍
[0002]随着计算机技术的发展,机器学习的应用领域也越来越广泛,很多应用场景下需要根据历史数据的发展规律进行数据预测,例如在个性化推荐领域,为了将用户最可能点击、更喜欢、更有付费倾向的内容能够优先展示,通过对展示的内容进行概率预估,并根据概率预估结果决定内容的展示与否或展示顺序。
[0003]相关技术中,采用单目标的概率预估模型仅能预测一个概率,若要同时预测多个概率,则需要训练多个模型并通过同时调用多个模型来获得多个推荐概率,然而在模型训练过程中,不同预测目标对应模型的训练样本量的需求不同,即存在数据稀疏性问题,例如对于点击率和转化率的样本量存在一个或几个数量级的差别,单独用来训练转化率模型的样本是不足的,则导致模型学习精度降低,影响概率预测的准确性;另一方面,单模型在转化率预估的预测阶段跟训练阶段的样本分布存在偏差,例如存在未点击而直接 ...
【技术保护点】
【技术特征摘要】
1.一种推荐概率预测方法,其特征在于,包括:获取用户的行为数据,并根据所述行为数据确定用户行为特征;将待推荐信息的特征和所述用户行为特征输入至多任务推荐概率预测模型中,以输出所述用户的多个目标推荐概率,所述多任务推荐概率预测模型至少包括专家网络、与预测目标对应的门网络、隐层网络和融合网络;其中,所述专家网络用于从多个维度对输入的第一目标特征进行特征提取,所述门网络用于输出提取的特征在对应的预测目标下的权重且输入至门网络的第二目标特征根据对应的预测目标确定,所述第一目标特征包含于所述第二目标特征,所述隐层网络用于根据对应门网络输出的权重,将提取的特征进行融合,所述融合网络用于对所述隐层网络输出的推荐概率进行融合处理。2.根据权利要求1所述的方法,其特征在于,所述多任务推荐概率预测模型是以用户历史行为样本数据和推荐信息样本数据确定的基础样本特征为输入进行训练得到的;其中,输入至所述专家网络的第一目标样本特征为输入至各个门网络的第二目标样本特征中的共有样本特征;输入至所述门网络的第二目标样本特征为所述基础样本特征中所述门网络对应预测目标特有的样本特征和所述共有样本特征。3.根据权利要求1所述的方法,其特征在于,所述目标推荐概率包括点击率和转化率,所述预测目标包括点击率和转化率,所述隐层网络根据对应门网络输出的权重,将提取的特征进行融合,包括:根据所述对应门网络输出的权重,对提取的特征进行加权求和,得到与所述专家网络具有相同维度的向量特征;所述向量特征经过所述隐层网络中的全连接网络和分类网络的处理,输出所述点击率或转化率。4.根据权利要求3所述的方法,其特征在于,所述目标推荐概率还包括点击且转化率,所述融合网络对各所述隐层网络输出特征进行融合处理,包括:将所述点击率和转化率进行概率连乘以确定所述点击且转化率。5.根据权利要求4所述的方法,其特征在于,所述多任务推荐概率预测模型训练过程中,损失函数的构建包括:根据得到的所述点击率与具有点击属性的样...
【专利技术属性】
技术研发人员:庄正中,赖弘基,张泽磊,
申请(专利权)人:广州博冠信息科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。