【技术实现步骤摘要】
一种基于卷积神经网络的红外图像目标检测网络压缩方法
[0001]本专利技术一种基于卷积神经网络的红外图像目标检测网络压缩方法,属于计算机视觉和红外图像处理领域,可以应用在红外图像识别领域中。
技术介绍
[0002]红外场景图像存在目标的数量和位置的不确定性、低信噪比、缺乏背景统计的先验信息等问题。因此,复杂环境下的红外目标检测仍然是一个具有挑战性的研究问题。面向红外图像目标提取方法研究目前常用的目标提取方法包括传统的数字图像处理算法如SIFT算法、达到筛选目的的背景减除法、基于神经网络的智能特征提取方法等,其中传统的图像处理算法红外目标、背景变化和干扰对抗的适应能力较差,尤其是抗干扰信息处理未能充分利用目标形状、运动信息及挖掘隐性对抗信息,不能完全满足和适应复杂环境的要求。因此,针对复杂环境中的随机不确定性问题,要求信息处理算法具备更强的自适应能力,需要寻求一种更有效的信息处理框架。基于深度学习的卷积神经网络目标识别分类技术,主要是能在高维特征空间对目标分类识别进行精细化建模与学习,实现对目标特征进行认知。近年来,深度学习技 ...
【技术保护点】
【技术特征摘要】
1.一种基于卷积神经网络的红外图像目标检测网络压缩方法,其特征在于步骤如下:步骤1,采集不同气候环境下、不同背景下和不同干扰下飞行器红外图像,对每个飞行器红外图像进行属性标定,形成红外图像数据集,分成训练图像集和测试图像集;由标定的属性,确定飞行器红外图像的特征值,作为特征真值;步骤2,使用图像样本,训练卷积神经网络模型,得到初始化的卷积神经网络模型;步骤3,读取训练图像集的图像,训练步骤2初始化的卷积神经网络模型,通过反向传播方式更新卷积神经网络模型中卷积核权重,以降低训练后的卷积神经网络模型输出的飞行器红外图像的特征值与步骤1确定的特征真值的误差;当该误差小于设定的误差阈值,则停止训练;在训练过程中对初始化的卷积神经网络模型进行网络模型参数轻量化,得到轻量化的卷积神经网络模型;步骤4,读取测试图像集中的图像,将测试图像集中的图像输入到步骤3轻量化的卷积神经网络模型中,得到飞行器的类型以及在图像中的位置。2.根据权利要求1所述的一种基于卷积神经网络的红外图像目标检测网络压缩方法,其特征在于:未经轻量化的卷积神经网络模型占用较多存储空间和计算资源,进行网络模型参数轻量化,通过在训练过程中将步骤2初始化的卷积神经网络模型参数中的浮点参数转化为定点参数,减少网络模型工作所占用的资源,进而达到网络轻量化的目标。3.根据权利要求1所述的一种基于卷积神经网络的红外图像目标检测网络压缩方法,其特征在于:步骤3网络模型参数...
【专利技术属性】
技术研发人员:杨俊彦,陈海宝,陈杰,钮赛赛,朱婧文,
申请(专利权)人:上海航天控制技术研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。