一种高产量、小粒径的银纳米颗粒的制备方法技术

技术编号:31315427 阅读:25 留言:0更新日期:2021-12-12 23:43
本申请提供一种高产量、小粒径的银纳米颗粒的制备方法,包括以下步骤:将油胺溶解于液体石蜡,待混合溶液完全澄清后加入硝酸银并低温加热和超声搅拌获得高浓度的硝酸银溶液;通入惰性气体以吹洗去除溶液中的溶解氧;密封加热该溶液并保温,通过还原反应和熟化反应获得粒径均一、球形度高的银纳米颗粒;将上述溶液与正己烷溶液混合,离心分离上层清液获得底部高浓缩的银纳米颗粒膏体,使用无水乙醇和正己烷的混合溶液对银纳米颗粒膏体实施数次“再分散

【技术实现步骤摘要】
一种高产量、小粒径的银纳米颗粒的制备方法


[0001]本专利技术属于纳米材料制备
,具体涉及一种高产量、小粒径的银纳米颗粒的制备方法。

技术介绍

[0002]柔性电子是电子制造产业的最新发展方向,其相关材料的合成技术备受关注。特别是随着新冠疫情的全球性蔓延,人们对居家智能办公设备及生命健康监测设备的需求激增,导致柔性显示屏、柔性可穿戴传感器等柔性电子产品的供给量严重不足,行业对柔性电子快速制造技术的需求愈发强烈,而对于适用于柔性电子快速制造的关键材料的需求则更为迫切。目前,喷墨打印、丝网印刷等柔性电子快速制造技术不断突破,然而适用于柔性电子快速制造的关键材料的缺乏仍然是行业发展的主要瓶颈。
[0003]金属纳米颗粒是制作柔性电子电路的核心材料,其中银纳米颗粒因为具有极佳的导电、导热特性,可以在较低温度且空气氛围中烧结,所以被广泛应用于柔性电子电路的制造工艺中。一般认为,银纳米颗粒尺寸越小,其烧结驱动力越大,进而带来烧结温度降低、烧结速率增加、对柔性基板损伤减小等优点,有利于柔性电子电路的快速制造。然而,烧结驱动力越大,则颗粒越容易本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种高产量、小粒径的银纳米颗粒的制备方法,其特征在于,包括以下步骤:步骤S1:将油胺溶于液体石蜡并形成混合溶液A,待所述混合溶液A完全澄清后,将硝酸银加入所述混合溶液A,通过低温加热、超声搅拌的联合作用使所述硝酸银完全溶解于所述混合溶液A中并形成混合溶液B,向所述混合溶液B中通入惰性气体,进而获得吹洗后的硝酸银溶液;步骤S2:将吹洗后的所述硝酸银溶液密封加热至额定温度并保温,通过还原反应与熟化反应形成含有高浓度银纳米颗粒的混合溶液C;步骤S3:将所述含有高浓度银纳米颗粒的混合溶液C降至室温,添加正己烷溶液并混合均匀得到混合溶液D,将所述混合溶液D进行首次离心,去除离心后的上层清液得到离心产物D;使用正己烷和无水乙醇的混合溶液对所述离心产物D再次超声分散,待离心杯底部无明显固体残留后通过离心去除上层清液;重复数次离心产物再分散与离心去除上层清液的清洗过程得到离心产物Y,再真空干燥离心产物Y,最终获得所述银纳米颗粒。2.根据权利要求1所述的一种高产量、小粒径的银纳米颗粒的制备方法,其特征在于,步骤S1中所述油胺和所述硝酸银的摩尔比为20:1至1:1,所述油胺和所述石蜡的体积比为1:3至1:10。3.根据权利要求1所述的一种高产量、小粒径的银纳米颗粒的制备方法,其特征在于,步骤S1中将所述硝酸银加入所述混合溶液A后,所述低温加热采用连续性工作方式,加热温度为20

50℃;所述超声搅拌采用间断式工作方式,超声功率为100

1000W,超声工作时间为5

30min,间隔...

【专利技术属性】
技术研发人员:张志昊操慧珺韦存伟张煜
申请(专利权)人:厦门城市职业学院厦门开放大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1