一种定量控制元素含量梯度变化的高熵合金薄膜及制备方法技术

技术编号:31165073 阅读:15 留言:0更新日期:2021-12-04 10:39
本发明专利技术公开了一种定量控制元素含量梯度变化的高熵合金薄膜及制备方法,该方法采用磁控溅射同时控制直流电源和射频电源进行溅射,进而控制所需锰元素的溅射沉积速率达到含量梯度连续变化的高熵合金薄膜。该薄膜按照原子百分比为:Cr:20

【技术实现步骤摘要】
一种定量控制元素含量梯度变化的高熵合金薄膜及制备方法


[0001]本专利技术属于合金材料领域,具体涉及到在一份高熵合金薄膜样品中定量控制元素含量沿厚度方向梯度变化的制备方法。

技术介绍

[0002]自2004年来,高熵合金的出现突破了原有传统稀合金的设计,创造了合金设计的新思路。它是由5种或5种以上的近等原子比元素组成,其造成的高混合熵可以大幅降低吉布斯自由能,稳定固溶体相。所以,高熵合金的晶体结构相对简单,而不是相互竞争的复杂易脆的金属间相。此外,高熵合金具有稳定的高温力学性能、低温断裂韧性优异以及良好的室温性能。
[0003]高熵合金是一个蕴含无数新合金体系的广阔领域。目前我们对其研究十分有限。通过成分调控来寻找具有优异综合力学性能的高尚合金体系的一直是研究热点。但是,如何有效减少材料开发时间?我们需要新的思路在敏感依赖于成分和结构的性能探索道路上快速导航。高通量的实验因此被人们提出和探索。
[0004]对于高熵合金而言,有诸多关于主要成分替换、主要成分含量调控以及微量元素添加等方面的研究来改善其性能。如果能在一个样品中,甚至在一个晶粒中设计某个元素或者多个元素的含量连续变化,并且测量其连续性能变化,将会是一种有效的高通量实验手段。

技术实现思路

[0005]基于上述讨论,本专利技术旨在提出一种在高熵合金薄膜中定量控制元素梯度变化的制备方法。
[0006]为达到上述目的,本专利技术采用如下技术方案:
[0007]一种定量控制元素含量梯度变化的高熵合金薄膜,包括以下组分,按照原子百分比为:Cr:20

24%、Mn:20

42%、Fe:16

22%、Co:13

19%、Ni:10

13%,其中锰元素含量呈现了大幅连续梯度变化,所有组分的原子百分比之和为100%。
[0008]一种定量控制元素含量连续梯度分布的高熵合金薄膜制备方法,采用磁控溅射同时控制直流电源和射频电源进行溅射,进而控制所需锰元素的溅射沉积速率达到含量梯度连续变化的高熵合金薄膜。
[0009]本专利技术所采用的方法,具体包括如下步骤:
[0010]1)将洁净的基底与底托固定好放入超高真空磁控溅射设备悬空基片台上。
[0011]2)将需要的高熵合金靶材与纯锰靶材固定在相应的射频和直流电源上。
[0012]3)采用高纯氩气作为主要离化气体进行辉光放电,对两种靶材进行有效溅射,沉积在基底。
[0013]4)沉积过程中,先打开直流电源正常启辉后,再打开射频电源启辉。
[0014]5)通过控制两个电源功率进行多次溅射沉积,单次溅射时长30min

60min,间歇时
长10

20min。
[0015]所述靶材的纯度均为99.9

99.99wt%。
[0016]所述高熵合金靶材的成分为近等原子比的CrMnFeCoNi。
[0017]所述基底为单晶硅(100)、(111)。
[0018]所述高纯氩气纯度≥99.999%。
[0019]所述射频电源功率固定在110

130W,直流电源的功率从30W以每次6

10W的速度减少至0W。
[0020]所述溅射次数为4—7次。
[0021]进一步地,步骤4)中沉积时需要打开基底旋转开关,沉积会更为均匀致密。
[0022]进一步地,步骤4)正式沉积前需要预溅射,去除靶材表面的杂质,避免影响薄膜含量定量控制。
[0023]本专利技术具有以下优点:
[0024]1.利用此种方法得到沿高熵合金薄膜厚度方向Mn元素从20at%到42at%连续梯度变化的样品。
[0025]2.独特的含量变化导致了从表面纳米晶到内部非晶的结构变化,成为纳米晶与非晶复合材料。
[0026]3.对此试样进行连续结构以及性能变化测量,可有效预测此含量控制对高熵合金的影响,寻找最优组分,符合高通量实验的设计目标。
附图说明
[0027]图1是高熵合金薄膜的SEM结果图;
[0028](a)EDS元素含量变化图。
[0029](b)薄膜横截面结构图。
[0030]图2是TEM得到的高熵合金薄膜微观结构图。
[0031](a)薄膜微观结构放大图
[0032](b

e)图(a)中四个区域的衍射图
[0033]图3是Mn含量约为49at%的高熵合金对比试样的TEM微观结构图。
具体实施方式
[0034]下面将结合具体实例以及附图来详细说明本专利技术,但并不作为对本专利技术的限定。
[0035]参照图1所示,图(a)显示了高熵合金薄膜5种元素随着薄膜厚度(从表面到内部)的变化图,其中锰元素含量变化范围20at%~42at%,而其他四种元素的含量变化范围相对很小。图(b)显示了此高熵合金薄膜的总厚度为1.78μm。
[0036]参照图2所示,图(a)显示薄膜整体结构,薄膜中白亮区域为晶界(离子减薄造成)。进一步地,对图(a)中四个区域的微观结构通过衍射进行表征,显示在图(b

e)。衍射斑点逐渐消失,非晶环逐渐形成而且变得明亮,表明了从表面纳米晶结构逐渐到内部非晶结构过渡的结构特征。
[0037]参照图3所示,当高熵合金薄膜中锰含量约为49at%,且没有含量沿厚度变化时,高分辨TEM图以及右上角的衍射图均显示试样为非晶结构。
[0038]实施例1
[0039]采用间歇磁控溅射的方式在硅基底上制备成分为CrMnFeCoNi的5元高熵合金薄膜。同时控制射频电源和直流电源对近等原子比的CrMnFeCoNi高熵合金靶材和纯锰金属靶材进行溅射,其中射频电源功率固定在120W,直流电源的功率从30W以每次10W的速度减至0W,溅射4次,单次溅射时长60min,间歇时长20min,共计5.3小时。
[0040]所得高熵合金薄膜SEM测试结果如图1所示,结果表明5种元素中,锰元素含量变化范围为从20at%到42at%,而其他四种元素的含量变化范围相对很小,而此高熵合金薄膜的总厚度为1.78μm。而含量梯度变化也造成了结构的变化(图2),薄膜结构从表面的纳米晶结构演化到内部的非晶结构。也就是说,当锰元素含量越高时,越有利于非晶结构形成。进一步地,我们也表征了锰元素含量无变化(约为49at%)的高熵合金薄膜试样的TEM微观结构,显示为非晶结构,这与我们得到的结论趋势相符合。相对比于其他高熵合金薄膜,本专利技术制备的薄膜不仅具有元素含量梯度变化,而且具有高通量特征,显示了元素含量与结构之间的联系,为高熵合金的探索提供了有效途径。
[0041]实施例2
[0042]通过间歇磁控溅射,同时控制射频电源和直流电源对近等原子比的CrMnFeCoNi高熵合金靶材和纯锰金属靶材进行溅射,其中射频本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种定量控制元素含量梯度变化的高熵合金薄膜,其特征在于:包括以下组分,按照原子百分比为:Cr:20

24%、Mn:20

42%、Fe:16

22%、Co:13

19%、Ni:10

13%,其中锰元素含量呈现了大幅连续梯度变化,所有组分的原子百分比之和为100%。2.一种定量控制元素含量梯度变化的高熵合金薄膜的制备方法,其特征在于,具体包括以下步骤:1)将洁净的基底与底托固定好放入超高真空磁控溅射设备悬空基片台上;2)将需要的高熵合金靶材与纯锰靶材固定在相应的射频和直流电源上;3)采用高纯氩气作为主要离化气体进行辉光放电,对两种靶材进行有效溅射,沉积在基底;4)沉积过程中,先打开直流电源正常启辉后,再打开射频电源启辉;5)控制...

【专利技术属性】
技术研发人员:黄平杨玥玥王飞
申请(专利权)人:西安交通大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1