一种基于拉锥无芯光纤的M-Z干涉型折射率传感器制造技术

技术编号:30540972 阅读:18 留言:0更新日期:2021-10-30 13:18
本实用新型专利技术公开了一种基于拉锥无芯光纤的M

【技术实现步骤摘要】
一种基于拉锥无芯光纤的M

Z干涉型折射率传感器


[0001]本技术属于光纤传感器
,特别涉及一种基于拉锥无芯光纤的马赫

曾德尔(M

Z)干涉型折射率传感器。

技术介绍

[0002]折射率传感器在环境监测、视频检测、临床检验等领域具有非常重要的应用,公开号为CN111929278A的中国专利申请中公开了一种基于球形结构的折射率传感器,该折射率传感器具有两个相同球形结构通过光纤侧抛结构连接,前球形结构接输入光纤,后球形结构接出射光纤,在折射率变化时,透射光谱波长产生漂移,实现了折射率的灵敏度测量;但该折射率传感器的缺点在于:结构较为复杂、成本较为昂贵;公开号为CN111665220A的中国专利申请中公开了一种基于花生结构的无温度干扰M

Z型折射率传感器,即用单模光纤两端熔接为花生结构,构成M

Z型传感器,该折射率传感器的缺点在于:结构复杂且折射率灵敏度较低。

技术实现思路

[0003]技术目的:为解决现有折射率传感器成本高、结构复杂、折射率铭感度低等问题,本技术提出了一种基于拉锥无芯光纤的马赫

曾德尔(M

Z)干涉型折射率传感器,可用于溶液折射率检测,将待测折射率的变化量转化为探测信号的光谱波长漂移,具有结构简单、成本低、灵敏度高等特点。
[0004]技术方案:一种基于拉锥无芯光纤的M

Z干涉型折射率传感器,包括第一单模光纤、多模光纤、由对无芯光纤进行拉锥操作得到的拉锥无芯光纤和第二单模光纤,第一单模光纤的输出端与多模光纤的输入端熔接;该多模光纤的输出端与拉锥无芯光纤的输入端熔接,该拉锥无芯光纤的输出端与第二单模光纤的输入端熔接。
[0005]进一步的,第一单模光纤的长度为5

8cm。
[0006]进一步的,多模光纤的长度为0.5

1cm。
[0007]进一步的,拉锥无芯光纤的长度1

1.5cm。
[0008]进一步的,拉锥无芯光纤的锥腰直径为30

50um。
[0009]进一步的,第二单模光纤的长度为5

8cm。
[0010]本技术还公开了一种制备上述基于拉锥无芯光纤的M

Z干涉型折射率传感器的制备机构,包括将第一单模光纤、多模光纤、无芯光纤和第二单模光纤依次首尾熔接得到熔接结构的光纤熔接机、用于固定熔接结构两端的两个拉锥平台、用于控制拉锥平台动作的两个步进电机和用于产生氢氧焰的氢氧焰产生装置;氢氧焰产生装置设置在两个步进电机的中间位置,且无芯光纤部分置于氢氧焰火头加热的位置。
[0011]有益效果:本技术与现有技术相比,具有以下优点:
[0012](1)本技术利用无芯光纤进行熔融拉锥,光纤折射率传感器以外界环境介质作为包层,利用其对环境折射率的敏感特性,可实现高灵敏度、大动态范围、高精度的光纤
折射率的测量;
[0013](2)本技术的折射率传感器由单模光纤、多模光纤和拉锥无芯光纤通过熔接连接,具有结构简单、制作方便等优点,且本技术采用普通商用光纤,还具有造价低廉的优点。
附图说明
[0014]图1为本技术的纵向剖视图;
[0015]图2为本技术的制作方法步骤图;
[0016]图3为本技术的系统测试图;
[0017]图4为本技术对不同折射率测得的干涉图谱;
[0018]图5为本技术的共振波长与不同折射率的关系图。
具体实施方式
[0019]现结合附图和实施例进一步阐述本技术的技术方案。
[0020]参见图1,本实施例的一种基于拉锥无芯光纤的M

Z型折射率传感器,是利用光纤拉锥及熔接技术基于马赫

曾德尔干涉原理对折射率进行测量,其具体结构包括第一单模光纤1、多模光纤3、拉锥无芯光纤5和第二单模光纤7,第一单模光纤1的输出端与多模光纤3的输入端熔接;多模光纤3的输出端与拉锥无芯光纤5的输入端熔接,拉锥无芯光纤5的输出端与第二单模光纤7的输入端熔接,本实施例的拉锥无芯光纤5是将无芯光纤去除涂覆层,并将两端切割平整后与多模光纤3熔接,再进行拉锥操作。
[0021]第一单模光纤1的输出端与多模光纤3的输入端熔接形成第一熔接点2,第一熔接点2用于将第一单模光纤1中的高斯光传输到多模光纤3的纤芯中,以激发出更多高阶模式的光束;多模光纤3的输出端与拉锥无芯光纤5的输入端熔接形成第二熔接点4,第二熔接点4用于将多模光纤3中激发出的高阶模式的光束一部分耦合进拉锥无芯光纤5中,一部分耦合进外界环境介质中;拉锥无芯光纤5的输出端与第二单模光纤7的输入端熔接形成第三熔接点6,第三熔接点6将拉锥无芯光纤5与外界环境中的光束耦合进第二单模光纤7中。本实施例通过对无芯光纤进行拉锥操作,当光在无芯光纤中传播时,无芯光纤可以被认为是纤芯,外界环境介质是包层,那么倏逝波将存在于无芯光纤和外界环境介质的交界面。因包层折射率和纤芯折射率的不同,产生光程差,形成干涉。随着外界折射率的改变,包层的折射率改变,从而,通过传输光谱中干涉谱对应波长的偏移来感知外界环境有效折射率的变化,达到测量折射率的目的。
[0022]不同长度的单模光纤会使得干涉图样形成不同的自由光谱范围,因此,当第一单模光纤1、第二单模光纤7的长度越长,自由光谱范围越小,作为优选,第一单模光纤1、第二单模光纤7的长度范围可选择在5

8cm,本实施例中,第一单模光纤1的长度为5cm,第二单模光纤7长度为5cm。根据研究表明,多模光纤3起到增大干涉条纹对比度的作用,作为优选,多模光纤3的长度范围可选择在0.5

1cm,本实施例中,多模光纤3长度为1cm。不同长度的拉锥无芯光纤5会使得干涉图谱中的消光比不同,拉锥无芯光纤5的长度越长,消光比越大,不同锥腰直径的拉锥无芯光纤5对MZI干涉条纹损耗及对比度有直接影响,锥腰越细,干涉谱损耗越深,对比度越高,作为优选,拉锥无芯光纤5的长度范围可选择在1

1.5cm,拉锥无芯光
纤5锥腰直径范围可选择在30

50um;本实施例中,拉锥无芯光纤5长度为1.5cm,锥腰直径为30um。
[0023]参见图2,上述结构的M

Z型折射率传感器的制备步骤如下:
[0024]步骤1:将单模光纤除去涂覆层并用酒精擦拭干净,得到无涂覆层的光纤;切取两段长度均为5cm的无涂覆层的光纤,并将其两端的切割面切割平整,得到第一单模光纤1和第二单模光纤7;
[0025]步骤2:将多模光纤除去涂覆层并用酒精擦拭干净,得到无涂覆层的多模光纤;切取长度为1cm的无涂覆层的光纤,并将其两端的切割面切割平整,得到多模光纤3;
本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于拉锥无芯光纤的M

Z干涉型折射率传感器,其特征在于:包括第一单模光纤(1)、多模光纤(3)、由对无芯光纤进行拉锥操作得到的拉锥无芯光纤(5)和第二单模光纤(7),所述第一单模光纤(1)的输出端与所述多模光纤(3)的输入端熔接;该多模光纤(3)的输出端与拉锥无芯光纤(5)的输入端熔接,该拉锥无芯光纤(5)的输出端与所述第二单模光纤(7)的输入端熔接。2.根据权利要求1所述的一种基于拉锥无芯光纤的M

Z干涉型折射率传感器,其特征在于:所述第一单模光纤(1)的长度为5

8cm。3.根据权利要求1所述的一种基于拉锥无芯光纤的M

Z干涉型折射...

【专利技术属性】
技术研发人员:王婷婷王秀婷孙家程戴洋
申请(专利权)人:南京信息工程大学
类型:新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1