一种沙姆镜头畸变分析方法技术

技术编号:29613758 阅读:102 留言:0更新日期:2021-08-10 18:26
本发明专利技术涉及一种沙姆镜头畸变分析方法,包括如下步骤:S1、计算光学畸变:S11:将沙姆镜头等效成传统镜头;S12:通过计算等效传统镜头畸变得出沙姆镜头光学畸变;S2:计算梯形畸变:S3:根据光学畸变和梯形畸变叠加得到沙姆镜头畸变。上述发明专利技术将光学畸变精确地与梯形畸变分离并且最大程度的减小光学畸变,将决定沙姆镜头的最终成像质量情况。

【技术实现步骤摘要】
一种沙姆镜头畸变分析方法
本专利技术涉及光学系统像差分析,具体涉及一种沙姆镜头畸变分析方法。
技术介绍
随着光学、图像处理和计算机技术的发展,3D线激光测量技术得到广泛应用。它利用工业相机拍摄得到相应的图像信息,并对图像进行一系列的处理,提取出所需要的信息,最终达到测量的目的;3D线激光测量技术是一种快速发展的非接触式测量,具有灵活性好、速度快、精度高以及智能化等优点。3D线激光测量技术需要镜头拍摄倾斜目标,然而传统镜头受景深的限制难于对倾斜目标全视野清晰成像。一种新型成像镜头——沙姆镜头,可以对倾斜目标全视野清晰成像。沙姆镜头设计需要重点关注其畸变特性,沙姆镜头畸变由固有梯形畸变和光学畸变两部分组成。设计过程中,将光学畸变精确地与梯形畸变分离并且最大程度的减小光学畸变,将决定沙姆镜头的最终成像质量情况。如图2所示,沙姆镜头畸变由固有梯形畸变和光学畸变两部分组成,长方形目标经沙姆镜头成像于探测器变成梯形,其中包含固有梯形畸变和光学畸变。由于固有梯形畸变远大于光学畸变,所以光学畸变通常被掩盖在梯形畸变内。欲想设计高分辨率沙姆镜头,需要将光学畸变提取出来单独进行计算、优化设计。
技术实现思路
为了解决上述技术问题,本专利技术提供了一种用于非接触式测量的光学系统像差分析,具体为一种沙姆镜头畸变分析方法,其有助于沙姆镜头的光学设计,通过将沙姆镜头等效成传统镜头计算沙姆镜头光学畸变,便于在光学设计过程中对沙姆镜头光学畸变进行有效地优化控制,从而设计出高质量沙姆镜头。具体地,本专利技术提供了一种沙姆镜头畸变分析方法,包括如下步骤:S1、计算光学畸变:S11:将沙姆镜头等效成传统镜头;S12:通过计算等效传统镜头畸变得出沙姆镜头光学畸变;S2:计算梯形畸变:S3:根据光学畸变和梯形畸变叠加得到沙姆镜头畸变。优选地,当沙姆镜头倾斜物平面D'D”成像于像平面F'F”,步骤S11中沙姆镜头等效传统镜头的方法具体为:作D'M'平面、DM平面、D”M”平面垂直于光轴DF,分别成像于F'N'平面、FN平面、F”N”平面,此时沙姆镜头转变成对垂直于光轴平面成像的传统镜头。优选地,在D”M”平面和D'M'平面之间建立无数个垂直于光轴的平面,沙姆镜头光学畸变范围为0<|DIS光学|<最大值(|D”M”平面|到|D’M’平面|)。优选地,垂直于光轴平面的畸变基于空间光线追迹原理获得。优选地,确定沙姆镜头光学畸变范围方法,包括如下步骤:S01:确定沙姆镜头光学畸变最大值;S02:确定D”M”平面的D”点畸变;S03:确定D'M'平面的D'点畸变;S04:比较步骤S02的D”点畸变和步骤S03的D'点畸变大小;S05:将步骤S04比较后的畸变较大者作为沙姆镜头光学畸变最大值,从而确定沙姆镜头光学畸变范围。优选地,梯形畸变通过下式计算得到:设物体尺寸为y,经过沙姆镜头成像后尺寸为y',α是目标平面与镜头光轴的夹角,β是探测器平面与镜头光轴的夹角,f′为沙姆镜头焦距,m0为传统系统,没有像差下的理想放大倍率。优选地,当沙姆镜头转变成对垂直于光轴平面成像的传统镜头时,α=90°,则sin(α)=1,y'=m0y,梯形畸变为0。与现有技术相比,本专利技术所产生的有益效果是:(1)通过将沙姆镜头等效成传统镜头计算沙姆镜头光学畸变,便于在光学设计过程中对沙姆镜头光学畸变进行有效地优化控制,从而设计出高质量沙姆镜头。(2)沙姆镜头倾斜物平面D'D”成像于像平面F'F”。将沙姆镜头等效成传统镜头成像:作D'M'平面、DM平面、D”M”平面垂直于光轴DF,分别成像于F'N'平面、FN平面、F”N”平面,此时沙姆镜头转变成了对垂直于光轴平面成像的传统镜头。即,对倾斜目标D'D”成像时为沙姆镜头,对垂直于光轴平面成像时为传统镜头,如图3。该方法具备通用性,适合任何成像方式的沙姆镜头。附图说明图1为沙姆定律成像原理图;图2为沙姆镜头成像情况;图3为沙姆镜头等效传统镜头示意图;图4为实施例1沙姆镜头结构图;图5为实施例1MTF曲线图;图6为实施例1轴向球差曲线图;图7为实施例1等效成传统镜头结构图:物距D'M';图8为实施例1等效成传统镜头光学畸变:物距D'M';图9为实施例1等效成传统镜头结构图:物距D”M”;图10为实施例1等效成传统镜头光学畸变:物距D”M”;图11为实施例2沙姆镜头结构图;图12为实施例2MTF曲线图;图13为实施例2轴向球差曲线图;图14为实施例2等效成传统镜头结构图:物距D'M';图15为实施例2等效成传统镜头光学畸变:物距D'M';图16为实施例2等效成传统镜头结构图:物距D”M”;图17为实施例2等效成传统镜头光学畸变:物距D”M”;图18为实施例3沙姆镜头结构图;图19为实施例3MTF曲线图;图20为实施例3轴向球差曲线图;图21为实施例3等效成传统镜头结构图:物距D'M';图22为实施例3等效成传统镜头光学畸变:物距D'M';图23为实施例3等效成传统镜头结构图:物距D”M”;图24为实施例3等效成传统镜头光学畸变:物距D”M”。具体实施方式下面结合附图对本专利技术做进一步的详细说明。由沙姆定律,当目标平面、镜头主面、探测器平面三者延长线相交于一线,且相交线唯一,此时可以对整个倾斜目标DOF范围清晰成像,图1给出了沙姆定律成像原理图。目标平面、镜头主面、探测器平面三者延长线相交于一线,且相交线唯一,需要满足以下沙姆关系式:其中,α是目标平面与镜头光轴的夹角,β是探测器平面与镜头光轴的夹角,a'是光轴上D点的物距,b'是光轴上D点的像距,b'/a'为镜头的轴上点D的放大倍率。畸变为物体成像后的实际像高偏离理想像高的程度。设物体尺寸为y,经过沙姆镜头成像后尺寸为y',只考虑梯形畸变的情况下,y'由下式给出:由沙姆镜头物像关系式(2)可知,长方形目标经沙姆镜头成像于探测器变成梯形如图(2),矩形方框为理想成像形状,梯形点云为实际成像形状。只存在梯形畸变时,绝对梯形畸变大小为DIS梯形=y'-y×m0,相对梯形畸变大小为DIS梯形=(y'-y×m0)/(y×m0),其中y×m0为理想像高,m0为传统系统,没有像差下的理想放大倍率。通常更多以相对畸变,即偏离理想像高的百分比表示畸变程度。传统镜头对有一定尺寸的物体成像时,存在光学畸变。沙姆镜头畸变由固有梯形畸变和光学畸变两部分组成。DIS=DIS梯形+DIS光学即,实际像高y'=y×m0+DIS梯形+DIS光学。沙姆镜头梯形畸变属于固有特性,没有办法加以控制。但是,可以通过合理的光学设计使得光学畸变控制在可接受的范围内,使得实际像本文档来自技高网...

【技术保护点】
1.一种沙姆镜头畸变分析方法,其特征在于,包括如下步骤:/nS1、计算光学畸变:/nS11:将沙姆镜头等效成传统镜头;/nS12:通过计算等效传统镜头畸变得出沙姆镜头光学畸变;/nS2:计算梯形畸变:/nS3:根据光学畸变和梯形畸变叠加得到沙姆镜头畸变。/n

【技术特征摘要】
1.一种沙姆镜头畸变分析方法,其特征在于,包括如下步骤:
S1、计算光学畸变:
S11:将沙姆镜头等效成传统镜头;
S12:通过计算等效传统镜头畸变得出沙姆镜头光学畸变;
S2:计算梯形畸变:
S3:根据光学畸变和梯形畸变叠加得到沙姆镜头畸变。


2.如权利要求1所述的一种沙姆镜头畸变分析方法,其特征在于,
当沙姆镜头倾斜物平面D'D”成像于像平面F'F”,步骤S11中沙姆镜头等效传统镜头的方法具体为:作D'M'平面、DM平面、D”M”平面垂直于光轴DF,分别成像于F'N'平面、FN平面、F”N”平面,此时沙姆镜头转变成对垂直于光轴平面成像的传统镜头。


3.如权利要求2所述的一种沙姆镜头畸变分析方法,其特征在于,在D”M”平面和D'M'平面之间建立无数个垂直于光轴的平面,沙姆镜头光学畸变范围为0<|DIS光学|<最大值(|D”M”平面|到|D’M’平面|)。


4.如权利要求2所述的一种沙姆镜头畸变分析方法,其特征在于,垂直于光轴平面的畸变...

【专利技术属性】
技术研发人员:赵效楠彭思龙汪雪林顾庆毅
申请(专利权)人:苏州中科全象智能科技有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1