基于深度支持向量数据描述模型的拉链异常检测方法技术

技术编号:29589110 阅读:19 留言:0更新日期:2021-08-06 19:49
本发明专利技术公开了一种基于深度支持向量数据描述模型的拉链异常检测方法,其方案是:采集拉链图像;获取训练集,测试集与验证集,并进行预处理;构建自编码器,用预处理后的训练集拉链图像块对其预训练;将训练后自编码器中的编码器参数作为深度支持向量数据描述模型中特征提取网络的初始参数,用预处理后的训练集拉链图像块对其训练;将验证集和测试集中的拉链图像块分别输入到训练好的深度支持向量数据描述模型中,得到经验阈值T和测试集中拉链图像块的异常得分s,若s>T,则拉链块为异常,反之,为正常;归并完整拉链上所有拉链块检测结果,检测出整条拉链的质量。本发明专利技术检测种类多,检测精度高,检测速度快,大大降低了数据采集成本,可用于拉链生产线。

【技术实现步骤摘要】
基于深度支持向量数据描述模型的拉链异常检测方法
本专利技术属于图像处理
,更进一步涉及一种拉链异常检测方法,可应用于工业制造的自动化流水线中衣物品上拉链的异常检测,降低生产成本。
技术介绍
拉链在日常生活中普遍存在,例如在服饰、箱包等生活用品中有着广泛的应用。而在拉链生产过程中难免出现各种各样的异常情况,如链齿小咪、布带破损以及下止不到位等瑕疵。而瑕疵品的出现可能会影响人们的生活体验,并损害生产单位和相关品牌的名誉。当前工厂往往需要雇佣工人来人工筛选缺陷样本,而人工目视检测存在以下几个缺点:一是检测质量差:人工质检受到主观因素影响较大,不同检测人员的检测结果难以统一,且受视觉疲劳影响,检测质量不稳定;二是检测效率低:人工检测的速度慢,且不同人员检测效率也不一致;三是人工成本高:人工培训成本和用工成本比较高,人员流动也造成人力成本进一步增加;四是信息集成难:人工检测难以做到实时集成和处理检测数据,影响生产工艺改进和质量控制分析的效率,对自动化生产流程适配比较弱。由于人工检测手段存在各种不足,且不能满足当前自动化流水线高产能的特点,工厂企业迫切需求某项能够代替人工检测的技术来缓解检测压力。近年来,基于计算机视觉的自动化检测技术蓬勃发展,而且自动化检测能够一次投入,运营成本低,效率高,且监控质量稳定。广东欧亚宝拉服饰配件有限公司在其申请的专利文献“拉链自动检测机”(专利申请号:201320544461.6;申请公布号:CN203432617U)中提出了一种拉链自动检测机。该装置包括底座,底座上设有传送单元、检测单元、控制单元以及分离单元,其中传送单元,即传送带,用于传送待检测的拉链,检测单元用于检测拉链,并将拉链信息传送到控制单元,控制单元判断拉链是否合格,分离单元将判断出的非合格拉链与合格拉链进行分离。该方法由于在检测部分只表述了利用处理器快速地对拍摄的影像进行分析和处理,以判断是否为合格品,而没有详细阐述如何进行分析和处理,因而拉链检测效果差。中国计量大学、杭州智感科技有限公司、杭州质慧信息技术有限公司在其申请的专利文献“一种拉链尺寸图像采集装置及基于该装置的在线视觉检测系统”(专利申请号:201810135429.X;申请公布号:CN108180837A)中提出了一种拉链尺寸图像采集装置及基于该装置的在线视觉检测系统。其通过中心处理器和控制器控制图像采集装置实现拉链尺寸是否合格的实时判断,输出检测结果。但由于该在线视觉检测系统只能针对拉链的尺寸不正常这一种异常类型进行检测,而现实生活中拉链的异常种类繁多,因而该专利技术并不能满足生产中筛选出所有异常种类拉链的需求。
技术实现思路
本专利技术的目的在于针对上述已有技术的不足,提出一种基于深度支持向量数据描述模型的拉链异常检测方法,以检测出多种异常类别的拉链,提升拉链异常检测效果。为实现上述目的,本专利技术的技术方案包括如下:(1)使用两个点光源,分别置于拉链的上侧和下侧,保持光照强度不变,使用强对比度背景置于拉链正下侧,使用线扫相机对其进行拍摄,采集正常拉链图像与异常拉链图像,保证采集到的正常拉链图像与异常拉链图像的数量比例为5:1;(2)选取采集正常拉链图像的十分之九作为训练集,选取采集正常拉链图像的十分之一与采集异常拉链图像的二分之一作为测试集,并将剩余的采集异常拉链图像的二分之一作为验证集;(3)对拉链图像进行预处理:3a)从拉链图像长边最底端开始向上,按行计算每一行像素的方差,直到某一行的方差大于阈值0,再将这一行以下的黑色背景全部裁剪掉;3b)将裁剪后的拉链图像宽度调整为512,并按裁剪前的原图像长宽比调整裁剪后图片的长度,再将该调整后的拉链图像裁剪为512×512大小的拉链图像块;(4)构建基于跳跃连接的自编码器,并对其进行预训练:4a)构建包含编码器和解码器的自编码器,将训练集中的所有拉链图像块输入到该自编码器中,编码器将输入数据逐渐压缩为尺寸更小的特征图,最后压缩为中间表征向量,解码器对中间表征向量进行重建,逐渐扩大特征图尺寸,并利用跳跃连接将编码器中与解码器尺寸相同的特征图进行拼接,输出与输入拉链图像块图像相同尺寸的预测图像;4b)计算输入图像与自编码器输出预测图像之间的L2误差损失,并将其作为损失函数,利用Adam反向传播优化算法来训练自编码器,直至该损失函数收敛,得到预训练好的自编码器模型;(5)训练深度支持向量数据描述模型:5a)使用与自编码器的编码器网络结构相同的网络作为特征提取网络,并将预训练后得到的编码器的网络参数作为特征提取网络的初始参数,将训练集中的所有拉链图像块输入到该特征提取网络中,计算所有中间表征向量,并求出平均值,将其作为预设球心c;5b)通过特征提取网络提取输入图像块样本对应的表征向量,计算表征向量与球心c之间的L2误差损失,得到深度一分类损失函数L(W),将其作为特征提取网络的损失函数;5c)在每一次训练迭代完毕后调整球心位置,将训练集中的所有拉链图像块输入到本次训练完毕后的特征提取网络中,算出图像块对应的表征向量并求出所有表征向量的均值,作为下一次训练的预设球心c;5d)利用Adam反向传播优化算法对该特征提取网络进行训练,直至深度一分类损失函数L(W)收敛,得到训练好的特征提取网络模型;5e)将训练集中的所有拉链图像块输入到训练好的特征提取网络模型中,求出所有表征向量并计算均值,将其作为最终球心cf;(6)判断拉链块是否为异常:6a)将测试集中的每个拉链图像块输入到训练好的特征提取网络模型中,得到其表征向量,并计算该表征向量与最终球心cf的均方误差,得到每个测试拉链图像块的异常得分s:s=||φ(X;W*)-cf||2,其中,X表示输入的拉链图像块,φ表示特征提取网络的模型结构,W*是训练好的特征提取网络模型权重参数;6b)设置经验阈值T,将异常得分s与设定的阈值T相比较:若s>T,则拉链块为异常,反之,为正常;(7)归并拉链块检测结果,检测出整条拉链的质量:统计每一条测试拉链上的所有拉链图像块的异常检测结果,并采用“一票否决”的机制,归并同一条测试拉链的所有拉链图像块的检测结果,即只有当一条完整拉链上的所有拉链图像块都为正常时,则该条拉链被判为正品,否则,在一条完整拉链上只要有一个拉链块为异常,则整条拉链被判为次品。本专利技术与现有技术相比具有以下优点:第一,本专利技术由于只利用正常样本进行训练,不需要额外采集异常样本,降低了训练成本。第二,本专利技术由于通过拟合正常样本的分布,可以通过将远离超球体球心的样本都判定为异常拉链,克服了现有技术只能针对有限异常类型的异常拉链进行检测的问题,实现了对任一种异常类型的拉链进行检测。第三,本专利技术由于使用基于跳跃连接的自编码器结构,将网络的低层特征与高层特征进行融合,克服了现有技术所得编码器参数对正常样本分布拟合能力差,且模型不易收敛的问题,使得预训练阶段可以为正式训练阶段的特征提取网络本文档来自技高网
...

【技术保护点】
1.一种基于深度支持向量数据描述模型的拉链异常检测方法,其特征在于,包括如下:/n(1)使用两个点光源,分别置于拉链的上侧和下侧,保持光照强度不变,使用强对比度背景置于拉链正下侧,使用线扫相机对其进行拍摄,采集正常拉链图像与异常拉链图像,保证采集到的正常拉链图像与异常拉链图像的数量比例为5:1;/n(2)选取采集正常拉链图像的十分之九作为训练集,选取采集正常拉链图像的十分之一与采集异常拉链图像的二分之一作为测试集,并将剩余的采集异常拉链图像的二分之一作为验证集;/n(3)对拉链图像进行预处理:/n3a)从拉链图像长边最底端开始向上,按行计算每一行像素的方差,直到某一行的方差大于阈值0,再将这一行以下的黑色背景全部裁剪掉;/n3b)将裁剪后的拉链图像宽度调整为512,并按裁剪前的原图像长宽比调整裁剪后图片的长度,再将该调整后的拉链图像裁剪为512×512大小的拉链图像块;/n(4)构建基于跳跃连接的自编码器,并对其进行预训练:/n4a)构建包含编码器和解码器的自编码器,将训练集中的所有拉链图像块输入到该自编码器中,编码器将输入数据逐渐压缩为尺寸更小的特征图,最后压缩为中间表征向量,解码器对中间表征向量进行重建,逐渐扩大特征图尺寸,并利用跳跃连接将编码器中与解码器尺寸相同的特征图进行拼接,输出与输入拉链图像块图像相同尺寸的预测图像;/n4b)计算输入图像与自编码器输出预测图像之间的L2误差损失,并将其作为损失函数,利用Adam反向传播优化算法来训练自编码器,直至该损失函数收敛,得到预训练好的自编码器模型;/n(5)训练深度支持向量数据描述模型:/n5a)使用与自编码器的编码器网络结构相同的网络作为特征提取网络,并将预训练后得到的编码器的网络参数作为特征提取网络的初始参数,将训练集中的所有拉链图像块输入到该特征提取网络中,计算所有中间表征向量,并求出平均值,将其作为预设球心c;/n5b)通过特征提取网络提取输入图像块样本对应的表征向量,计算表征向量与球心c之间的L2误差损失,得到深度一分类损失函数L(W),将其作为特征提取网络的损失函数;/n5c)在每一次训练迭代完毕后调整球心位置,将训练集中的所有拉链图像块输入到本次训练完毕后的特征提取网络中,算出图像块对应的表征向量并求出所有表征向量的均值,作为下一次训练的预设球心c;/n5d)利用Adam反向传播优化算法对该特征提取网络进行训练,直至深度一分类损失函数L(W)收敛,得到训练好的特征提取网络模型;/n5e)将训练集中的所有拉链图像块输入到训练好的特征提取网络模型中,求出所有表征向量并计算均值,将其作为最终球心c...

【技术特征摘要】
1.一种基于深度支持向量数据描述模型的拉链异常检测方法,其特征在于,包括如下:
(1)使用两个点光源,分别置于拉链的上侧和下侧,保持光照强度不变,使用强对比度背景置于拉链正下侧,使用线扫相机对其进行拍摄,采集正常拉链图像与异常拉链图像,保证采集到的正常拉链图像与异常拉链图像的数量比例为5:1;
(2)选取采集正常拉链图像的十分之九作为训练集,选取采集正常拉链图像的十分之一与采集异常拉链图像的二分之一作为测试集,并将剩余的采集异常拉链图像的二分之一作为验证集;
(3)对拉链图像进行预处理:
3a)从拉链图像长边最底端开始向上,按行计算每一行像素的方差,直到某一行的方差大于阈值0,再将这一行以下的黑色背景全部裁剪掉;
3b)将裁剪后的拉链图像宽度调整为512,并按裁剪前的原图像长宽比调整裁剪后图片的长度,再将该调整后的拉链图像裁剪为512×512大小的拉链图像块;
(4)构建基于跳跃连接的自编码器,并对其进行预训练:
4a)构建包含编码器和解码器的自编码器,将训练集中的所有拉链图像块输入到该自编码器中,编码器将输入数据逐渐压缩为尺寸更小的特征图,最后压缩为中间表征向量,解码器对中间表征向量进行重建,逐渐扩大特征图尺寸,并利用跳跃连接将编码器中与解码器尺寸相同的特征图进行拼接,输出与输入拉链图像块图像相同尺寸的预测图像;
4b)计算输入图像与自编码器输出预测图像之间的L2误差损失,并将其作为损失函数,利用Adam反向传播优化算法来训练自编码器,直至该损失函数收敛,得到预训练好的自编码器模型;
(5)训练深度支持向量数据描述模型:
5a)使用与自编码器的编码器网络结构相同的网络作为特征提取网络,并将预训练后得到的编码器的网络参数作为特征提取网络的初始参数,将训练集中的所有拉链图像块输入到该特征提取网络中,计算所有中间表征向量,并求出平均值,将其作为预设球心c;
5b)通过特征提取网络提取输入图像块样本对应的表征向量,计算表征向量与球心c之间的L2误差损失,得到深度一分类损失函数L(W),将其作为特征提取网络的损失函数;
5c)在每一次训练迭代完毕后调整球心位置,将训练集中的所有拉链图像块输入到本次训练完毕后的特征提取网络中,算出图像块对应的表征向量并求出所有表征向量的均值,作为下一次训练的预设球心c;
5d)利用Adam反向传播优化算法对该特征提取网络进行训练,直至深度一分类损失函数L(W)收敛,得到训练好的特征提取网络模型;
5e)将训练集中的所有拉链图像块输入到训练好的特征提取网络模型中,求出所有表征向量并计算均值,将其作为最终球心cf;
(6)判断拉链块是否为异常:
6a)将测试集中的每个拉链图像块输入到训练好的特征提取网络模型中,得到其表征向量,并计算该表征向量与最终球心cf的均方误差,得到每个测试拉链图像块的异常得分s:
s=||φ(X;W*)-cf||2,
其中,X表示输入的拉链图像块,φ表示特征提取网络的模型结构,W*是训练好的特征提取网络模型权重参数;
6b)设置经验阈值T,将异常得分s与设定的阈值T相比较:若s>T,则拉链...

【专利技术属性】
技术研发人员:高新波梁栋路文李庚桓何立火
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1