【技术实现步骤摘要】
基于用户社交网络和产品相似度的推荐方法
本专利技术属于数据挖掘
,具体涉及一种基于用户社交网络和产品相似度的推荐方法。
技术介绍
近年来,随着互联网技术的广泛应用,信息过载问题越来越严重,为了满足用户的个性化需求,在海量的数据中对信息进行筛选,推荐系统应运而生。通过推荐系统,可以将不同的产品精准地推荐给用户,大大节省了用户选购各种产品的时间,同时有利于产品的价值最大化。传统的产品推荐系统主要包括两大类:基于产品内容属性相似度的内容过滤(Content-BasedFiltering,CB)算法以及基于用户产品交互记录挖掘各自相似度的协同过滤(CollaborationFiltering,CF)算法。CB算法忽略了用户和产品之间复杂的交互关系,CF算法过于依赖历史交互记录,无法应对数据稀疏和冷启动问题,而且面对大规模网络时缺乏时效性。针对以上问题,基于知识图谱的推荐算法被提出。知识图谱(Knowledgegraph,KG)作为一种异构图,可以表征用户以及产品之间的内在属性关系,把用户以及产品的属性作为边缘信息引入推 ...
【技术保护点】
1.一种基于用户社交网络和产品相似度的推荐方法,其特征在于,包括:/nS1:初始化用户特征向量和产品特征向量;/nS2:构建用户-用户社交关系图、用户-产品交互图和产品知识图谱;/nS3:将所述用户特征向量分别输入所述用户-产品交互图和所述用户-用户社交关系图中,得到第一用户特征向量和第二用户特征向量,计算所述第一用户特征向量与所述第二用户特征向量的用户相似度,根据所述用户相似度以及预设的第一相似度阈值,迭代更新用户特征向量,得到优化的用户特征向量;/nS4:将所述产品特征向量分别输入所述用户-产品交互图和所述产品知识图谱中,得到第一产品特征向量和第二产品特征向量,计算所述 ...
【技术特征摘要】
1.一种基于用户社交网络和产品相似度的推荐方法,其特征在于,包括:
S1:初始化用户特征向量和产品特征向量;
S2:构建用户-用户社交关系图、用户-产品交互图和产品知识图谱;
S3:将所述用户特征向量分别输入所述用户-产品交互图和所述用户-用户社交关系图中,得到第一用户特征向量和第二用户特征向量,计算所述第一用户特征向量与所述第二用户特征向量的用户相似度,根据所述用户相似度以及预设的第一相似度阈值,迭代更新用户特征向量,得到优化的用户特征向量;
S4:将所述产品特征向量分别输入所述用户-产品交互图和所述产品知识图谱中,得到第一产品特征向量和第二产品特征向量,计算所述第一产品特征向量与所述第二产品特征向量的产品相似度,根据所述产品相似度以及预设的第二相似度阈值,迭代更新产品特征向量,得到优化的产品特征向量;
S5:根据所述优化的用户特征向量和所述优化的产品特征向量,进行用户的偏好预测,得到推荐结果。
2.根据权利要求1所述的基于用户社交网络和产品相似度的推荐方法,其特征在于,所述S1包括:
将离散的节点特征向量映射为连续的向量,学习节点特征向量的低维潜在表示,其中,所述节点特征向量包括用户特征向量和产品特征向量。
3.根据权利要求1所述的基于用户社交网络和产品相似度的推荐方法,其特征在于,所述S2包括:
S21:利用用户与用户之间的社交关系,构建得到所述用户-用户社交关系图:
其中,uo表示社交发起者,ue表示社交参与者,yuu表示用户与用户之间的社交关系,U表示用户集;
S22:利用用户与产品的历史交互记录,构建得到所述用户-产品交互图:
其中,I表示产品集,u表示用户集U中的任何一个用户,i表示产品集I中的任何一个产品,yui表示用户u和产品i之间的连接关系;
S23:利用产品的属性特征,构建得到所述产品知识图谱:
其中,h表示头实体,t表示尾实体,r表示实体之间的关系,R表示关系集。
4.根据权利要求1所述的基于用户社交网络和产品相似度的推荐方法,其特征在于,所述S3包括:
S31:将所述用户特征向量输入所述用户-...
【专利技术属性】
技术研发人员:郭洁,周妍,王昊,宋彬,陈璐,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。