当前位置: 首页 > 专利查询>河海大学专利>正文

一种基于三维激光雷达的破波带波浪水动力监测方法及其系统技术方案

技术编号:29581293 阅读:34 留言:0更新日期:2021-08-06 19:38
本发明专利技术公开了一种基于三维激光雷达的破波带波浪水动力监测方法及其系统,旨在解决现有技术中破波带波浪水动力监测困难的技术问题。所述方法包括:利用三维激光雷达获得多个海洋表面监测点的三维坐标;根据海洋表面监测点的三维坐标获得每个海洋表面监测点的波面水位时间序列;根据海洋表面监测点的波面水位时间序列计算波浪的偏态、波形不对称值和自由水面高程梯度的方差,并判断破波带内波浪的破碎点。所述系统包括数据采集模块、波浪监测模块、监测显示模块、数据存储模块、通信模块和电源模块。本发明专利技术能够实现高精度、高分辨率的破波带波浪水动力要素连续监测。

【技术实现步骤摘要】
一种基于三维激光雷达的破波带波浪水动力监测方法及其系统
本专利技术涉及一种基于三维激光雷达的破波带波浪水动力监测方法及其系统,属于海洋观测

技术介绍
破波带是近岸波浪最活跃的区域,在破波带中有波浪传播变形和破碎现象,而波浪的传播变形和破碎对岸滩爬高、岸线演变、海洋安全都有重要的影响,因此获取破波带波面数据显得尤为重要。然而,由于波浪破碎过程迅速、破碎点随时间不断变化,目前想要通过现场观测获取破波带的高分辨率数据还很困难。传统的海洋监测方法主要包括船舶监测、浮标监测和雷达监测,船舶监测消耗人力物力,难以实现长期连续观测;浮标监测采用自动化监测,可以实现定点长期观测,但抗风浪能力不足、受海洋天气影响、浮标电池持续力和耐腐蚀性不足;雷达监测是近年来发展的声学监测技术,无需在海里安装仪器,测量结果可靠性增强,但雷达图像提取参数较为困难。更为重要的是,以上监测方法主要是采用单点测量,且不能直接获得波形,不能有效获取破碎点的位置,也不能对局部海域波浪进行高精度和高分辨率的二维连续观测,难以被应用到破波带波浪水动力监测中。
技术实现思路
为了解决现有技术中破波带波浪水动力监测困难的问题,本专利技术提出了一种基于三维激光雷达的破波带波浪水动力监测方法及其系统,实现高精度、高分辨率的破波带波浪水动力要素连续监测。为解决上述技术问题,本专利技术采用了如下技术手段:第一方面,本专利技术提出了一种基于三维激光雷达的破波带波浪水动力监测方法,包括如下步骤:利用三维激光雷达实时获得破波带内多个海洋表面监测点的三维坐标;根据海洋表面监测点的三维坐标和静水海面高程计算波面水位,获得每个海洋表面监测点的波面水位时间序列;根据每个海洋表面监测点的波面水位时间序列计算波浪的偏态和、波形不对称值和自由水面高程梯度的方差,并根据自由水面高程梯度的方差判断破波带内波浪的破碎点。结合第一方面,进一步的,每个海洋表面监测点的三维坐标的获得方法为:利用三维激光雷达向破波带内海洋表面发射多条不重合的激光,并接收海洋表面反射的激光,每条激光对应一个海洋表面监测点;根据激光光速和激光反射时间计算当前时刻每个海洋表面监测点到三维激光雷达的相对距离;根据三维激光雷达的绝对坐标、激光发射角度和每个海洋表面监测点到三维激光雷达的相对距离,计算当前时刻每个海洋表面监测点的三维坐标。结合第一方面,进一步的,所有海洋表面监测点的三维坐标组成的集合为Qt={Pt1,…,Pti,…,Ptm},其中,Qt表示t时刻的波面点集,Pti表示t时刻第i个海洋表面监测点的三维坐标,i=1,2,…,m,m为海洋表面监测点的数量;所述波面水位时间序列的获得方法为:根据预设的邻近点数量计算每个海洋表面监测点的距离阈值:其中,表示t时刻第i个海洋表面监测点的距离阈值,k为第i个海洋表面监测点的邻近点数量,k的取值与m有关,j=1,2,…,k,表示t时刻第i个海洋表面监测点与其第j个邻近点之间的欧氏距离,r为阈值系数,dstd为第i个海洋表面监测点与其k个邻近点之间的距离标准差;比较和当大于时,判定第j个邻近点为离群点,将其剔除出集合Qt,获得滤波后的三维坐标集合;根据滤波后的三维坐标集合中的纵向坐标z和静水海面高程h计算每个海洋表面监测点在每个时刻的波面水位Δh=z-h;利用不同时刻的波面水位组成每个海洋表面监测点的波面水位时间序列。结合第一方面,进一步的,根据每个海洋表面监测点的波面水位时间序列计算波浪的偏态和波形不对称值的方法为:根据每个海洋表面监测点的波面水位时间序列获得每个波浪在每个海洋表面监测点的纵向波形图,所述纵向波形图的横坐标为时间,纵向波形图的纵坐标为海洋表面监测点的纵向坐标z;根据纵向波形图计算纵向波面峰值和平均水位线;根据纵向波面峰值和平均水位线计算波浪的偏态,计算公式如下:其中,As表示波浪的偏态,ηc表示纵向波面峰值与平均水位线的高度差,H表示纵向波面峰值与其前一个波谷的高度差;根据纵向波面峰值和平均水位线计算波形不对称值,计算公式如下:其中,Sk表示波形不对称值,al表示波形图中平均水位线上升到纵向波面峰值的时间,ar表示波形图中纵向波面峰值下降到平均水位线的时间。结合第一方面,进一步的,将破波带划分为多个沿着向岸方向的剖面,则波浪在一个剖面上的破碎点的判断方法为:根据剖面上每个海洋表面监测点的纵向波形图得到其波面水位在[0.8H,H]范围内的G个时间点,并获得G个时间点的横向波形图,所述横向波形图的横坐标为海洋表面监测点的水平向坐标x,横向波形图的纵坐标为海洋表面监测点在当前时间点的纵向坐标z;根据每个海洋表面监测点的每个时间点的横向波形图,计算该海洋表面监测点与其相邻海洋表面监测点之间的自由水面高程梯度,得到G个自由水面高程梯度;根据G个自由水面高程梯度计算该海洋表面监测点的方差GVM;按照由远到近的顺序依次将剖面上每个海洋表面监测点的方差GVM与方差阈值比较,当方差GVM大于方差阈值,则该海洋表面监测点为波浪的破碎点。第二方面,本专利技术提出了一种基于三维激光雷达的破波带波浪水动力监测系统,包括:数据采集模块,用于利用激光雷达实时扫描破波带内的海洋表面,获取破波带内每个海洋表面监测点的三维坐标;波浪监测模块,用于根据每个海洋表面监测点的三维坐标计算破波带内每个波浪的波形数据,所述波形数据包括波面水位时间序列、波浪的偏态、波形不对称值和波浪的破碎点;监测显示模块,用于显示波浪监测模块获得的波形数据;数据存储模块,用于存储破波带内每个海洋表面监测点的三维坐标和破波带内每个波浪的波形数据;通信模块,用于将数据采集模块采集的三维坐标传输到数据存储模块和波浪监测模块,并将波浪监测模块的波形数据传输到数据存储模块和监测显示模块;电源模块,用于给数据采集模块、波浪监测模块、监测显示模块、数据存储模块和通信模块供电。结合第二方面,进一步的,所述数据采集模块包括保护装置、固定装置和三维激光雷达,所述保护装置和三维激光雷达安装在固定装置内部,三维激光雷达与保护装置电连接。结合第二方面,进一步的,所述三维激光雷达包括激光器、惯性导航子模块和定位子模块;所述保护装置包括防雷子模块和防漏电子模块;所述固定装置包括固定支座和泡沫夹层;三维激光雷达安装在固定支座的中间位置,保护装置安装在三维激光雷达与固定支座的内壁之间,泡沫夹层分别填充在固定支座内壁与保护装置之间、保护装置与三维激光雷达之间。结合第二方面,进一步的,所述数据存储模块包括保护箱、网络附属存储和散热装置,所述网络附属存储和散热装置安装在保护箱内,所述保护箱的一侧设有散热孔和接线孔,所述接线孔用于给网络附属存储连接网线和电源线。结合第二方面,进一步的,所述通信模块包括POE交换机和5G路由器,所述POE交换机用于连接其他模块,进本文档来自技高网...

【技术保护点】
1.一种基于三维激光雷达的破波带波浪水动力监测方法,其特征在于,包括如下步骤:/n利用三维激光雷达实时获得破波带内多个海洋表面监测点的三维坐标;/n根据海洋表面监测点的三维坐标和静水海面高程计算波面水位,获得每个海洋表面监测点的波面水位时间序列;/n根据每个海洋表面监测点的波面水位时间序列计算波浪的偏态、波形不对称值和自由水面高程梯度的方差,并根据自由水面高程梯度的方差判断破波带内波浪的破碎点。/n

【技术特征摘要】
1.一种基于三维激光雷达的破波带波浪水动力监测方法,其特征在于,包括如下步骤:
利用三维激光雷达实时获得破波带内多个海洋表面监测点的三维坐标;
根据海洋表面监测点的三维坐标和静水海面高程计算波面水位,获得每个海洋表面监测点的波面水位时间序列;
根据每个海洋表面监测点的波面水位时间序列计算波浪的偏态、波形不对称值和自由水面高程梯度的方差,并根据自由水面高程梯度的方差判断破波带内波浪的破碎点。


2.根据权利要求1所述的一种基于三维激光雷达的破波带波浪水动力监测方法,其特征在于,每个海洋表面监测点的三维坐标的获得方法为:
利用三维激光雷达向破波带内海洋表面发射多条不重合的激光,并接收海洋表面反射的激光,每条激光对应一个海洋表面监测点;
根据激光光速和激光反射时间计算当前时刻每个海洋表面监测点到三维激光雷达的相对距离;
根据三维激光雷达的绝对坐标、激光发射角度和每个海洋表面监测点到三维激光雷达的相对距离,计算当前时刻每个海洋表面监测点的三维坐标。


3.根据权利要求1所述的一种基于三维激光雷达的破波带波浪水动力监测方法,其特征在于,所有海洋表面监测点的三维坐标组成的集合为Qt={Pt1,…,Pti,…,Ptm},其中,Qt表示t时刻的波面点集,Pti表示t时刻第i个海洋表面监测点的三维坐标,i=1,2,…,m,m为海洋表面监测点的数量;所述波面水位时间序列的获得方法为:
根据预设的邻近点数量计算每个海洋表面监测点的距离阈值:



其中,表示t时刻第i个海洋表面监测点的距离阈值,k为第i个海洋表面监测点的邻近点数量,k的取值与m有关,j=1,2,…,k,表示t时刻第i个海洋表面监测点与其第j个邻近点之间的欧氏距离,r为阈值系数,dstd为第i个海洋表面监测点与其k个邻近点之间的距离标准差;
比较和当大于时,判定第j个邻近点为离群点,将其剔除出集合Qt,获得滤波后的三维坐标集合;
根据滤波后的三维坐标集合中的纵向坐标z和静水海面高程h计算每个海洋表面监测点在每个时刻的波面水位Δh=z-h;
利用不同时刻的波面水位组成每个海洋表面监测点的波面水位时间序列。


4.根据权利要求1所述的一种基于三维激光雷达的破波带波浪水动力监测方法,其特征在于,根据每个海洋表面监测点的波面水位时间序列计算波浪的偏态和波形不对称值的方法为:
根据每个海洋表面监测点的波面水位时间序列获得每个波浪在每个海洋表面监测点的纵向波形图,所述纵向波形图的横坐标为时间,纵向波形图的纵坐标为海洋表面监测点的纵向坐标z;
根据纵向波形图计算纵向波面峰值和平均水位线;
根据纵向波面峰值和平均水位线计算波浪的偏态,计算公式如下:



其中,As表示波浪的偏态,ηc表示纵向波面峰值与平均水位线的高度差,H表示纵向波面峰值与其前一个波谷的高度差;
根据纵向波面峰值和平均水位线计算波形不对称值,计算公式如下:



其中,Sk表示波形不对称值,al表示波形图中平均水位线上升到纵向波面峰值的时间,ar表示波形图中纵向波面峰值下降到...

【专利技术属性】
技术研发人员:时健张利鹏张弛郑金海
申请(专利权)人:河海大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1