实木板材颜色智能分类方法技术

技术编号:28982113 阅读:41 留言:0更新日期:2021-06-23 09:30
本发明专利技术公开一种实木板材颜色智能分类方法,包括:对实木板材图片预处理;将RGB彩色空间转换到Lab彩色空间和HSV彩色空间;获取Lab彩色空间、HSV彩色空间的颜色的一阶矩和二阶矩;使用K‑Means聚类算法对图片进行聚类;采用基于K‑Means聚类算法的主颜色提取方法对低通滤波后的实木板材图片进行主颜色提取,根据主颜色含量进行等级划分;对图片进行高通滤波,获得纹理信息,将图片划分为直纹或曲纹;给实木板材图片贴标签,制作样本集;将待分类的实木板材图片输入到训练、验证得到的最优颜色分类模型中,实现实木板材颜色分类;本发明专利技术可有效对实木板材图像颜色进行分类,且该方法不需要颜色空间量化、特征向量维数低。

【技术实现步骤摘要】
实木板材颜色智能分类方法
本专利技术属于图像识别
,具体涉及一种实木板材颜色智能分类方法。
技术介绍
颜色矩是一种简单有效的颜色特征表示方法,有一阶矩(均值,mean)、二阶矩(方差,variance)和三阶矩(斜度,skewness)等,由于颜色信息主要分布于低阶矩中,所以用一阶矩,二阶矩和三阶矩足以表达图像的颜色分布,颜色矩已证明可有效地表示图像中的颜色分布。颜色是彩色图像最重要的内容之一,被广泛用于图像检索中。但从图像中提取颜色特征时,很多算法都先要对图像进行量化处理。量化处理容易导致误检,并且产生的图像特征维数较高,不利于检索。实木板材的颜色分类没有具体的标准,各个企业间的分类存在差距,所以对于实木板材颜色的分类,企业多根据客户的实际需求进行划分。基于此,需要提供一种不需要颜色空间量化、特征向量维数低的实木板材颜色智能分类方法,为企业对实木板材的颜色分类提供方便。
技术实现思路
本专利技术所要解决的技术问题是针对上述现有技术的不足提供一种实木板材颜色智能分类方法,本实木板材颜色智能分类方本文档来自技高网...

【技术保护点】
1.一种实木板材颜色智能分类方法,其特征在于,包括:/n步骤1:采集多张实木板材图片,对实木板材图片进行预处理;/n步骤2:将每张实木板材图片均从RGB彩色空间分别转换到Lab彩色空间和HSV彩色空间;/n步骤3:分别获取Lab彩色空间图片的颜色的一阶矩和二阶矩和HSV彩色空间图片的颜色的一阶矩和二阶矩;/n步骤4:使用K-Means聚类算法对所有的Lab彩色空间的图片和HSV彩色空间的图片进行无监督学习,从而对采集的多张实木板材图片实现初步聚类,初步聚类为三类,记为a类、b类和c类;/n步骤5:对初步聚类后的每张实木板材图片进行低通滤波,获得底色;采用基于K-Means聚类算法的主颜色提取方...

【技术特征摘要】
1.一种实木板材颜色智能分类方法,其特征在于,包括:
步骤1:采集多张实木板材图片,对实木板材图片进行预处理;
步骤2:将每张实木板材图片均从RGB彩色空间分别转换到Lab彩色空间和HSV彩色空间;
步骤3:分别获取Lab彩色空间图片的颜色的一阶矩和二阶矩和HSV彩色空间图片的颜色的一阶矩和二阶矩;
步骤4:使用K-Means聚类算法对所有的Lab彩色空间的图片和HSV彩色空间的图片进行无监督学习,从而对采集的多张实木板材图片实现初步聚类,初步聚类为三类,记为a类、b类和c类;
步骤5:对初步聚类后的每张实木板材图片进行低通滤波,获得底色;采用基于K-Means聚类算法的主颜色提取方法对a类、b类和c类中低通滤波后的每张实木板材图片进行主颜色提取,获取每类中的主颜色含量变化的一般规律,剔除不符合一般规律的实木板材图片,进一步将a类、b类和c类中的实木板材图片细划为A类、B类和C类;
步骤6:对初步聚类后的每张实木板材图片进行高通滤波,获得实木板材图片的纹理信息,根据a类、b类和c类中的每张实木板材图片的纹理信息中的曲、直,将每张实木板材图片分别划分为直纹或曲纹;
步骤7、根据步骤5和步骤6的分类结果给每张实木板材图片贴标签,所述标签包括A类直纹、B类直纹、C类直纹、A类曲纹、B类曲纹和C类曲纹;
步骤8:将已贴标签的实木板材图片作为样本,将所有样本分为训练集、验证集和测试集;
步骤9:使用训练集对pytorch图像分类器进行训练,获得实木板材颜色估计模型,...

【专利技术属性】
技术研发人员:刘英王争光丁奉龙杨雨图倪超庄子龙周海燕费叶琦唐敏缑斌丽
申请(专利权)人:南京林业大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1