IPTV群障预警方法和系统技术方案

技术编号:28705203 阅读:68 留言:0更新日期:2021-06-05 22:38
本公开公开了一种IPTV群障预警方法和系统,涉及大数据及人工智能领域。其中的方法包括:获取目标预测时间范围之前预定时间段内的每个故障场景对应的IPTV故障特征数据,其中,目标预测时间范围包括目标预测时刻或目标预测时间段;将IPTV故障特征数据输入至对应故障场景的群障预测模型,预测目标预测时间范围的群障量;根据目标预测时间范围的真实群障量和预测群障量之间的关系,输出对应的告警信息。本公开能够及时发出故障告警信息,满足IPTV运维的实时性、准确性、自动化和全面性需求。自动化和全面性需求。自动化和全面性需求。

【技术实现步骤摘要】
IPTV群障预警方法和系统


[0001]本公开涉及大数据及人工智能领域,尤其涉及一种IPTV群障预警方法和系统。

技术介绍

[0002]随着视频、数字电视业务的发展,电信运营商IPTV(交互式网络电视)的用户量提升迅速。此前解决用户故障主要是以用户拨打客服电话投诉的内容和人工对设备巡检为抓手,依靠运维人员人工从后台系统中检查用户相关配置和设备负荷。但随着用户量的提升,节目源质量的不稳定和老旧设备的更新换代以及新的终端厂家招标入围等因素,以往的这种被动式故障处理方法,解决周期长且用户体验差。

技术实现思路

[0003]本公开要解决的一个技术问题是,提供一种IPTV群障预警方法和系统,能够及时发出故障告警信息。
[0004]根据本公开一方面,提出一种IPTV群障预警方法,包括:获取目标预测时间范围之前预定时间段内的每个故障场景对应的IPTV故障特征数据,其中,目标预测时间范围包括目标预测时刻或目标预测时间段;将IPTV故障特征数据输入至对应故障场景的群障预测模型,预测目标预测时间范围的群障量;根据目标预测时间范围的真实群障量本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种IPTV群障预警方法,包括:获取目标预测时间范围之前预定时间段内的每个故障场景对应的IPTV故障特征数据,其中,所述目标预测时间范围包括目标预测时刻或目标预测时间段;将所述IPTV故障特征数据输入至对应故障场景的群障预测模型,预测所述目标预测时间范围的群障量;根据所述目标预测时间范围的真实群障量和预测群障量之间的关系,输出对应的告警信息。2.根据权利要求1所述的IPTV群障预警方法,还包括:获取IPTV故障代码数据以及IPTV平台用户业务数据;对所述IPTV故障代码数据与所述IPTV平台用户业务数据进行匹配汇聚,确定多个故障场景中每个故障场景对应的样本故障特征数据;根据所述样本故障特征数据,训练所述群障预测模型。3.根据权利要求1或2所述的IPTV群障预警方法,其中,根据所述目标预测时间范围的真实群障量和预测群障量之间的关系,输出对应的告警信息包括:若所述真实群障量大于等于第一倍数的所述预测群障量,则输出第一告警信息;若所述真实群障量小于所述第一倍数的所述预测群障量,且大于等于第二倍数的所述预测群障量,则输出第二告警信息;若所述真实群障量小于所述第二倍数的所述预测群障量,且大于等于第三倍数的所述预测群障量,则输出第三告警信息;其中,所述第一倍数大于所述第二倍数,所述第二倍数大于第三倍数;所述第一告警信息的严重性大于所述第二告警信息的严重性,所述第二告警信息的严重性大于所述第三告警信息的严重性。4.根据权利要求2所述的IPTV群障预警方法,其中,所述多个故障场景包括电子节目指南EPG场景、内容分发网络CDN场景、机顶盒场景、产品包场景、网络层设备场景、接入失败场景和业务认证失败场景。5.根据权利要求4所述的IPTV群障预警方法,其中,根据所述样本故障特征数据训练所述群障预测模型包括:将所述EPG场景对应的样本故障特征数据作为神经网络模型的训练数据,对所述神经网络模型进行训练,得到所述EPG场景下的群障预测模型;将所述CDN场景对应的样本故障特征数据作为神经网络模型的训练数据,对所述神经网络模型进行训练,得到所述CDN场景下的群障预测模型;将所述机顶盒场景对应的样本故障特征数据作为神经网络模型的训练数据,对所述神经网络模型进行训练,得到所述机顶盒场景下的群障预测模型;将所述产品包场景对应的样本故障特征数据作为神经网络模型的训练数据,对所述神经网络模型进行训练,得到所述产品包场景下的群障预测模型;将所述网络层设备场景对应的样本故障特征数据作为神经网络模型的训练数据,对所述神经网络模型进行训练,得到所述网络层设备场景下的群障预测模型;将所述接入失败场景对应的样本故障特征数据作为时间序列预测模型的训练数据,对所述时间序列预测模型进行训练,得到所述接入失败场景下的群障预测模型;
将所述业务认证失败场景对应的样本故障特征数据作为时间序列预测模型的训练数据,对所述时间序列预测模型进行训练,得到所述业务认证失败场景下的群障预测模型。...

【专利技术属性】
技术研发人员:张永潘丁鸣杨林徐教强邱昊
申请(专利权)人:中国电信股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1