【技术实现步骤摘要】
基于图像识别的公交车道检测方法、装置及介质
本专利技术涉及人工智能,尤其涉及一种基于图像识别的公交车道检测方法、装置、电子设备及计算机可读存储介质。
技术介绍
人工智能技术的高速发展,深度学习越来越多的应用于计算机视觉中,尤其是图像识别领域。公交车道是专门为公交车设置的独立路权车道,是城市交通中非常重要的基础设施,因此对公交车道的检测也成了智能交通系统中不可或缺的环节之一。Yolo(全称为YouOnlyLookOnce)是常用的深度学习方法,仅仅使用一个CNN网络直接预测不同目标的类别与位置,YOLO将物体检测作为回归问题求解,基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。YOLO的核心思想就是利用整张图作为网络的输入,直接在输出层回归boundingbox的位置和boundingbox所属的类别。基于YOLOv3的深度学习方法,由于其检测速度快,成为目前业内比较流行的公交车道检测算法之一。基于YOLOv3的公交车道检测算法在晴天、白天、公交车道线清晰等简单场景下可以达到 ...
【技术保护点】
1.一种基于图像识别的公交车道检测方法,包括:/n获得车道的原始输入图像;/n构建特征抽取网络,抽取原始输入图像的图像特征,所述图像特征包括颜色特征、纹理特征、形状特征和空间关系特征中的一个或多个,所述特征抽取网络包括多个CBResX模块,所述CBResX模块包括ResX模块、两个CBL模块和CBM模块,ResX模块与一个CBL模块串联再与另外一个CBL模块并联拼接后与CBM模块连接,所述CBL模块指的是依次执行卷积、批归一化处理和激活操作的运算过程,所述ResX模块包括CBL模块和X个残差模块,所述残差模块指的是执行多个CBL模块操作与原始输入相加的运算过程,所述CBM模 ...
【技术特征摘要】
1.一种基于图像识别的公交车道检测方法,包括:
获得车道的原始输入图像;
构建特征抽取网络,抽取原始输入图像的图像特征,所述图像特征包括颜色特征、纹理特征、形状特征和空间关系特征中的一个或多个,所述特征抽取网络包括多个CBResX模块,所述CBResX模块包括ResX模块、两个CBL模块和CBM模块,ResX模块与一个CBL模块串联再与另外一个CBL模块并联拼接后与CBM模块连接,所述CBL模块指的是依次执行卷积、批归一化处理和激活操作的运算过程,所述ResX模块包括CBL模块和X个残差模块,所述残差模块指的是执行多个CBL模块操作与原始输入相加的运算过程,所述CBM模块指的是依次执行卷积、批归一化处理、与CBL模块不同的另一种激活操作的运算过程;
所述特征抽取网络的输出的图像特征执行多次CBL模块的操作和卷积操作获得一种尺度的特征图;
所述特征抽取网络的不同中间层分别执行多次CBL模块操作、卷积、上采样、特征融合操作,获得至少三种不同尺度的特征图;
在至少四种尺度的特征图上采用锚框的方法进行公交车道的监测和识别;
将特征图上对应的公交车道坐标映射为原始输入图像上的坐标,从而实现原始输入图像的公交车道检测。
2.如权利要求1所述的基于图像识别的公交车道检测方法,其特征在于,所述特征抽取网络为DarkNet68,具有67各卷积层,包括CBL模块、CBRes1模块、CBRes2模块、CBRes8模块、CBRes8模块和CBRes4模块。
3.如权利要求2所述的基于图像识别的公交车道检测方法,其特征在于,所述CBRes4模块的输出执行CBL模块的操作和卷积操作获得一种尺度的特征图;将CBRes2模块、CBRes8模块、CBRes8模块和CBRes4模块分别执行多次CBL模块的操作、卷积、上采样和特征融合操作,获得三种不同尺度的特征图。
4.如权利要求3所述的基于图像识别的公交车道检测方法,其特征在于,CBRes4模块的输出执行5层CBL模块的操作、1层CBL模块的操作和卷积操作获得第一尺度特征图;CBRes2模块、CBRes8模块、CBRes8模块和CBRes4模块分别执行1层CBL模块的操作和上采样与原始输出特征融合后分别执行5层CBL模块的操作、1层CBL模块的操作和卷积操作获得第二尺度特征图、第三尺度特征图和第四尺度特征图。
5.如权利要求1所述的基于图像识别的公交车道检测方法,其特征在于,
所述CBL模块的激活操作中的激活函数为LeakyRelu,所述CBM模块的激活操作中的激活函数为Mish。
6.如权利要求1所述的基于图像识别的公交车道检测方法,其特征在于,所述特征融合的步骤包括:
获取特征抽取网络一个中间层的第一输出矩阵;
获得第...
【专利技术属性】
技术研发人员:吴晓东,
申请(专利权)人:深圳赛安特技术服务有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。