一种基于FDM打印的生物活性腰椎融合器及其制备方法技术

技术编号:27719042 阅读:12 留言:0更新日期:2021-03-19 13:07
本发明专利技术公开了一种基于FDM打印的生物活性腰椎融合器及其制备方法。本发明专利技术生物活性腰椎融合器的制备方法,通过制备不同配方n‑HA/PLLA线材,进而在计算机控制下利用熔融沉积3D打印技术制备力学优化的解剖型腰椎椎间融合器,实现该融合n‑HA/PLLA融合器具有力学性能最优化的多孔结构,孔径200‑500um,孔隙率达50‑70%,弹性摩量500‑700MPa,压缩强度可达35‑50MPa,完全符合腰椎融合的要求。

【技术实现步骤摘要】
一种基于FDM打印的生物活性腰椎融合器及其制备方法
本专利技术涉及腰椎椎间融合器
,尤其涉及一种基于FDM打印的生物活性腰椎融合器及其制备方法。
技术介绍
腰椎的椎间融合技术包括后侧腰椎椎间融合术(PLIF)、经椎间孔腰椎椎间融合术(TLIF)、前路腰椎椎间融合术(ALIF)、直接外侧腰椎椎间融合术(DLIF)和侧前方腰椎椎间融合术(OLIF)。OLIF手术是2012年由法国Silvestre首先报道的一种微创技术。该手术经左下腹腹外斜肌、腹内斜肌、腹横肌的肌间隙进入腹膜外间隙,在左侧腰大肌和腹主动脉之间安放工作通道,进行椎间盘切除融合器植入手术。该技术可明显减少手术创伤、缩短手术时间、减少术中出血、缩短住院时间及患者康复时间。临床上使用的零切迹内固定系统均为钛板结合PEEK材料的椎间融合器,二者的弹性模量不同。而且由于PEEK材料属于生物惰性材料,骨组织无法长入其内部以达到良好的融合,致使骨-材料界面的结合强度不足,而且为达到足够的支撑强度,PEEK材料多需要有一定的厚度,从而进一步减少了植骨融合的空间,容易导致融合失败。目前市面上各种3D打印多孔钛合金材料,孔径通常较大,直径约300-1500μm,对于细胞平均10-20μm的直径来说,显然过于空旷,细胞只能在其孔壁二维空间上攀附生长,不能实现在整个孔洞内三维层次的生长。左旋聚乳酸/纳米羟基磷灰石(n-HA/PLLA)复合材料支架,其弹性模量为600-700MPa,接近人体松质骨,同时该复合材料具有体内可控降解和骨传导性能。通过材料组份比例优化和3D打印空间三维多孔设计,该支架可兼具良好的力学性能及孔隙率,是制备融合器的理想选择。因此,设计一种腰椎椎间融合器,具有足够支撑强度以维持椎间隙高度及椎体稳定性,具有良好的弹性摩量,从而达到良好的椎间融合,是本领域技术人员急需解决的技术问题。
技术实现思路
本专利技术的目的是针对现有技术中的不足,提供一种基于FDM打印的生物活性腰椎融合器及其制备方法。为实现上述目的,本专利技术采取的技术方案是:本专利技术的第一方面是提供一种基于FDM打印的生物活性腰椎融合器的制备方法,包括如下步骤:步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹性摩量500-700Mpa,压缩强度30-55MPa的多孔融合器。进一步地,通过3D软件设计及有限元分析,保证融合器具有解剖型多孔优化结构。进一步地,步骤三中,熔融沉积3D打印技术温度170-200℃。进一步地,所述多孔融合器的孔径在200-500um,弹性摩量500-700Mpa,压缩强度35-55MPa。本专利技术的第二方面是提供上述制备方法制备的生物活性腰椎融合器。本专利技术采用以上技术方案,与现有技术相比,具有如下技术效果:本专利技术的基于FDM打印的生物活性腰椎融合器的制备方法,通过制备不同含量的可3D打印的nHA/PLA材线,进而在计算机控制下利用熔融沉积3D打印技术制备力学优化的解剖型腰椎椎间融合器基体,n-HA/PLLA基体支架具有良好的力学性能,孔径200-500um,孔隙率达50-70%,弹性摩量500-700MPa,压缩强度可达30-55MPa。附图说明图1本专利技术生物活性腰椎融合器的制备过程的示意图;图2为本专利技术荧光示踪hBMSCs细胞在融合器网孔结构的黏附、增殖情况的电镜图。具体实施方式下面结合附图和具体实施例对本专利技术作进一步说明,但不作为本专利技术的限定。需要说明的是,在不冲突的情况下,本专利技术中的实施例及实施例中的特征可以相互组合。实施例本实施例提供了一种基于FDM打印的生物活性腰椎融合器的制备方法,包括如下步骤,如图1所示:步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,其中熔融沉积3D打印技术的温度为170-200℃,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹性摩量600-700Mpa,压缩强度30-55MPa的多孔融合器。作为一个优选实施例,上述多孔融合器的孔径在300-400um,弹性摩量650-700Mpa,压缩强度35-55MPa。验证例1.细胞毒性实验根据ISO10993-5国际标准对上述FDM打印的生物活性腰椎融合器进行体外细胞毒性检测。将融合器用细胞培养基浸提后,用稀释后的浸提液培养小鼠成纤维细胞并进行MTT检测。阴性对照液为高密度聚乙烯片浸提液,阳性对照液为苯酚稀释液。细胞毒性评价:根据MTT实验所测定的各组OD值,按照下列公式分别计算各实验组细胞相对增殖度。VB=(试验组平均OD值/阴性对照组平均OD值)×100%按照表1规定,将各组的VB转换成6级细胞毒性以评定材料的毒性程度。实验结果为0或1级反应为合格;实验结果为2级反应时应结合细胞形态分析综合评价;实验结果为3~5级反应为不合格。表1细胞毒性作用评价表本专利技术的生物活性腰椎融合器,细胞毒性实验实验结果为0或1级,表明本专利技术生物活性腰椎融合器合格。2.hBMSCs在融合器上的增殖情况将hBMSCs接种于实施例1制备的生物活性腰椎融合器,hBMSCs接种后第7天将附着在融合器上的细胞用胶原酶消化后MTT法检测细胞的增殖。通过绿色荧光蛋白(FITC)示踪细胞的黏附情况,在荧光显微镜和共聚焦显微镜下观察细胞的形态。结果如图2所示,可见hBMSCs在融合器上黏附、增殖情况良好。上所述仅为本专利技术较佳的实施例,并非因此限制本专利技术的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本专利技术说明书内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本专利技术的保护范围内。本文档来自技高网
...

【技术保护点】
1.一种基于FDM打印的生物活性腰椎融合器的制备方法,其特征在于,包括如下步骤:/n步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;/n步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;/n步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹性摩量500-700Mpa,压缩强度30-55MPa的多孔融合器。/n

【技术特征摘要】
1.一种基于FDM打印的生物活性腰椎融合器的制备方法,其特征在于,包括如下步骤:
步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;
步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;
步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹...

【专利技术属性】
技术研发人员:方国芳桑宏勋
申请(专利权)人:南方医科大学深圳医院
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1