当前位置: 首页 > 专利查询>南京大学专利>正文

基于多尺度卷积神经网络的糖尿病视网膜病变分类方法技术

技术编号:26973767 阅读:37 留言:0更新日期:2021-01-06 00:07
本发明专利技术公开了基于多尺度卷积神经网络的糖尿病视网膜病变分类方法,先将原始眼底图像进行归一化预处理,再以目标像素为中心,对预处理后的图像进行多尺度分割,得到不同尺度下的一系列形状、大小相同的图像序列。针对每个尺度,分别利用卷积神经网络模型对图像序列进行特征提取,得到不同尺度的特征并进行融合,针对融合后的特征来进行最后的分类,得到图像序列(即目标像素)的病变检测结果。将原始眼底图像上所有像素点的检测结果进行整合输出,即得到带有病变定位和分类的糖尿病视网膜病变检测结果图。本发明专利技术多尺度提取特征并融合,实现同时检测MAs和HEs两种病变的自适应尺度糖尿病视网膜病变,提高了糖尿病视网膜病变检测算法的性能。

【技术实现步骤摘要】
基于多尺度卷积神经网络的糖尿病视网膜病变分类方法
本专利技术涉及计算机视觉中的医学图像处理,更具体的,涉及一种基于多尺度卷积神经网络的糖尿病视网膜病变分类方法。
技术介绍
医学图像处理是近年来计算机视觉领域中最广泛的研究课题之一,糖尿病视网膜病变是致盲性慢性疾病之一,也是世界上可预防性失明的主要原因之一。该病治疗的关键在于早期诊断和干预治疗。基于彩色眼底图像的计算机辅助诊断技术可以显著提高早期糖尿病视网膜病变的筛查效率和有效性,因此基于该技术开发一种快速可靠的糖尿病视网膜病变病变智能检测方法是十分必要的。糖尿病视网膜病变检测的关键是病变的定位与分类,目前该领域的研究主要集中于如何定位和分类最重要的两种早期红色病变:微血管瘤和视网膜出血。这两种病变的定位与分类具有几大挑战性和难点:第一,微血管瘤是一种红色点状病变,通常稀疏地分布在视网膜黄斑和后极区域,体积小且数量少,这给定位带来了难度;第二,视网膜出血是一种暗红色或褐色的、形状和大小不规则的病变,由于颜色和血管以及眼底区域接近,给识别增加了难度;第三,微血管瘤与点状视网膜出血外观相似,这本文档来自技高网...

【技术保护点】
1.基于多尺度卷积神经网络的糖尿病视网膜病变分类方法,其特征在于,包括:/n(1)选取一系列眼底图像作为数据集进行糖尿病视网膜病变分类模型的训练和测试,数据集包括多张训练集和测试集;眼底图像涵盖从轻度非增殖性糖尿病视网膜病变到增生性糖尿病视网膜病变的图像;/n(2)对输入的眼底图像进行预处理,预处理包括目标区域提取和图像归一化;/n(3)将预处理后的眼底图像以1像素为滑动步长,分割成一系列以目标像素为中心的图像序列,图像大小为H*H,H的单位为像素,通过改变H的值来实现多尺度分割;其中对于训练集中的眼底图像,将分割成的图像序列标记为MA/HE/NON标签以供模型训练;/n(4)将步骤(3)得到...

【技术特征摘要】
1.基于多尺度卷积神经网络的糖尿病视网膜病变分类方法,其特征在于,包括:
(1)选取一系列眼底图像作为数据集进行糖尿病视网膜病变分类模型的训练和测试,数据集包括多张训练集和测试集;眼底图像涵盖从轻度非增殖性糖尿病视网膜病变到增生性糖尿病视网膜病变的图像;
(2)对输入的眼底图像进行预处理,预处理包括目标区域提取和图像归一化;
(3)将预处理后的眼底图像以1像素为滑动步长,分割成一系列以目标像素为中心的图像序列,图像大小为H*H,H的单位为像素,通过改变H的值来实现多尺度分割;其中对于训练集中的眼底图像,将分割成的图像序列标记为MA/HE/NON标签以供模型训练;
(4)将步骤(3)得到的训练集的图像序列输入所述模型进行训练;
(5)将待分类的眼底图像通过所述步骤(2)和(3)后得到不同尺度的一系列图像序列,将不同尺度的图像序列分别输入训练好的所述模型中,得到不同尺度的特征向量;将不同尺度的特征向量进行特征融合,生成融合特征向量,用分类器对融合特征向量进行分类,并输出该图像序列中心像素点的病变分类结果;整合输入的眼底图像中所有目标像素的分类结果后,得到该眼底图像的微血管瘤和视网膜出血两种病变检测结果图。


2.如权利要求1所述的方法,其特征在于,所述目标区域提取:提取的目标区域为覆盖视网膜70%以上的中心矩形区域,此区域内微血管瘤和视网膜出血这两种病变的分布最为密集;所述图像归一化,包括采用亮度均衡和对比度增强的方式。


3.如权利要求1所述的方法,其特征在于,所述多尺度分割:将眼底图像中的每个像素作为目标像素,以该目标像素为中心进行步长为1像素的滑动窗口分割,窗口大小为H*H,H的单位为像素,于是预处理后的图像被分割成一系列尺度为H的正方形图像序列,通过改变H的值来实现多尺度分割。


4.如权利要求3所述的方法,...

【专利技术属性】
技术研发人员:李杨黎琪彭成磊都思丹王杰陈佟周子豪
申请(专利权)人:南京大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1