一种区分汽油牌号的现场快速检测方法技术

技术编号:26971858 阅读:72 留言:0更新日期:2021-01-06 00:03
本发明专利技术涉及一种区分汽油牌号的现场快速检测方法,包括:收集多个汽油样品作为训练集;随机将训练集划分为校正集、预测集;使用便携式拉曼光谱仪测量各汽油样品的拉曼信号,得到它们的拉曼谱图及对应拉曼光谱数据;对所有样品的拉曼光谱图进行基线校正;基于校正后的拉曼光谱数据,利用PLS‑DA算法建立汽油牌号模型并对未参与建模的预测集样品进行预测。与现有技术相比,本发明专利技术具有测试时间短,准确度高的优势,同时所用仪器小巧,便于携带,操作简单,能够很好地满足现场快速检测的需求,从而为使用者提供便利。

【技术实现步骤摘要】
一种区分汽油牌号的现场快速检测方法
本专利技术涉及油品检测领域,尤其是涉及一种区分汽油牌号的现场快速检测方法。
技术介绍
汽油是我国乃至全球最重要,也是使用最多的引擎燃料,它来源于石油,是通过石油分馏或重质馏分裂化得到的,与人们的日常生活密不可分,它决定了人们出行的便利性。近年来,大量汽车涌入市场,汽油的日消耗量不断提高,加油站的数量也逐渐增加,极大地便利了广大车主。根据国家相关规定,汽油需按照辛烷值大小划分为不同牌号,目前市售的汽油牌号主要有92#、95#、98#等,其中92#汽油的辛烷值应不低于92,95#汽油的辛烷值应不低于95。辛烷值作为衡量汽油质量的一个重要指标,它决定了汽油的抗爆性能,汽油的辛烷值越大对应的抗爆性就越好。不同辛烷值的汽油适用于不同发动机,通常辛烷值高的汽油,适用于压缩比高的汽车,若使用低于自身车辆标号的汽油,不仅会使汽车的汽缸发生爆震现象,而且会导致耗油量增加,功率下降,甚至会损坏机件,缩短发动机使用寿命;但若使用高标号汽油,汽车在行驶中会产生加速无力的现象,并且高标油的高抗爆性优势无法发挥出来,造成不必要的浪费,甚至还会出现“滞燃”现象,使车辆损耗加剧,因此车主需根据车辆来选择对应牌号的汽油。据统计,高牌号汽油由于具有良好的抗爆性和较高的辛烷值,售价上略高于低牌号汽油,因此市场上出现了不少以低牌号汽油来冒充高牌号售卖的现象,这在一定程度上损害了消费者的权益,也对汽车本身硬件以及车辆的运行造成了影响。针对这些情况,相关执法部门也采取了一定的措施,定期到加油站抽样进行检测,以确定该牌号汽油是否达到对应辛烷值。目前常用的检测方法有研究法辛烷值、马达法辛烷值等,它们准确度高,也因此被当作评定商用汽油牌号的标准方法,然而这两种方法均需要在实验室条件下进行,且分析时间长,需要配备专用的辛烷测试仪,因此不能很好地满足现场快速检测的要求。如上所述,目前市场上汽油牌号主要是通过汽油的辛烷值来判定,辛烷值在数值上等于在规定条件下,与待测汽油抗爆性相同的标准燃料中异辛烷的体积分数,如92#汽油,是指它与92%异辛烷及8%正庚烷混合物的爆震程度相同。由此可以看到,辛烷值的测量并不容易,除了需要配置专用的试验用发动机测量待测汽油的爆震强度,还需要备有各种抗爆性等级的标准混合燃料,此外,所用的仪器体积较大,必须在实验室进行,且每一个待测样分析时间长,是一项费时费力且耗资的方法,尤其是相关执法部门,在汽油运输,以及对加油站售卖汽油进行抽样检测时,不能快速地检测出待测汽油牌号,加大了他们的工作负担。CN109991206A提供了一种基于偏最小二乘法对醇类汽油总醇含量测定的方法,该方法为利用拉曼光谱仪器对若干个醇类汽油进行光谱数据采集,分为校正集和测试集,对校正集的光谱数据通过十折交叉验证的方法寻优,得到最优潜变量,建立基于全谱和特征峰波段的偏最小二乘法校正模型,预测测试集的醇类汽油中各醇类的含量,得到醇类汽油总醇含量。该技术方案存在的缺陷为:建模使用的各醇含量值易影响模型准确度;其次,汽油样品在采集拉曼光谱时常常会存在荧光背景干扰,不经校正直接使用原始拉曼数据建模准确度较低。CN102338743A提供了一种识别发动机燃料种类和牌号中红外光谱方法,该方法包括每类收集一定数量样品作为训练集;测定训练集样品中红外吸收光谱;给训练集的样品赋以一类型数值;采用偏最小二乘法建立各类燃料类型数值与红外光谱的模型,并确定识别规则。对于未知发动机燃料样品的识别,用户只需测定其红外吸收光谱,然后由计算机利用该光谱,结合所建立模型测定其类型数值,结合识别规则进行种类和牌号识别。该技术方案存在的缺陷为:使用了多个模型分步识别,且设置了不同的识别类型参数,后面模型的分类正确率易受到前一个模型的影响。
技术实现思路
本专利技术的目的就是为了克服上述现有技术存在的缺陷而提供一种区分汽油牌号的现场快速检测方法,从而避免了现有实验室辛烷值测试法的不足,其中本技术方案使用便携式拉曼光谱仪测量待测汽油的光谱数据,并结合偏最小二乘判别分析(PLS-DA)建立已知汽油牌号与光谱数据之间的模型,只需通过模型只需测量光谱数据即可得到相应的汽油牌号。本专利技术的目的可以通过以下技术方案来实现:本专利技术一种区分汽油牌号的现场快速检测方法,包括以下步骤:S1:收集多个的汽油样品作为训练集;S2:使用便携式拉曼光谱仪测量各汽油样品的拉曼信号,并得到它们的拉曼谱图及对应的光谱数据;S3:对所有样品的拉曼谱图进行预处理;S4:基于处理后的拉曼光谱数据,利用PLS-DA建立汽油牌号模型;S5:利用建立的汽油牌号模型对未参与建模的预测集进行预测。进一步地,S1中所述汽油样品包括92#、95#、98#汽油样品。进一步地,S2中所述便携式拉曼光谱仪的激发波长为785nm,测量范围为173.69~3200.86cm-1,采集样品光谱信号时,积分时间设置为4000ms,激光强度设置为90%。进一步地,S3中所述预处理包括针对拉曼谱图中基线漂移或噪声现象,采用基线校正方法进行。进一步地,所述基线校正方法为背景扣除法。进一步地,S4中所述汽油牌号模型的生成过程为:以汽油样品的拉曼光谱数据作为自变量X矩阵,对应的牌号类别信息储层在矩阵Y中,再基于PLS-DA算法对训练集进行分类识别,得到汽油牌号的PLS回归模型。进一步地,所述PLS回归模型的生成过程包括以下步骤:S4-1:将光谱数据整理为矩阵X,其中:X中的每一行代表每一个汽油样本的光谱信息,每一列代表特定拉曼位移下的所有汽油样本的光谱信息;S4-2:将汽油的牌号类别整理为矩阵Y,其中Y的行数等于样本数,列数等于汽油牌号类别数,以此储存汽油样本的牌号信息,每行中特定汽油样本在牌号类别对应列的数值为1,否则为0;S4-3:随机将训练集样本分为校正集、预测集,校正集用于模型建立,预测集用于模型内部检验,校正集与预测集的样品数量之比为3:1;S4-4:以校正集的牌号类别变量Y对光谱数据X进行PLS回归分析,建立汽油牌号的PLS回归模型。进一步地,S4-3中通过校正集建立的模型来对训练集的所有汽油样品进行预测,分别计算校正集、预测集的正判率,验证此模型的准确性。进一步地,S5中识别汽油样品的牌号的标准为,使用S4中建立并验证的模型预测待测汽油样品类别数值yp是否大于预设阈值,以此判定该汽油样品属于这一类。与现有技术相比,本专利技术具有以下技术优势:1)分析速度快。本技术方案采用拉曼光谱法,能够在几秒内获取样品的结构及组分信息,且不需要对样品进行前处理。2)灵敏度高。即使是牌号相同的不同汽油样本在同一拉曼位移下,也呈现出不同的峰值,具有不同的拉曼强度。3)准确度高。建模使用的拉曼光谱数据均通过基线校正,避免了现有技术中遇到的样品信号采集时的荧光干扰;其次每个样品的汽油牌号均对应着通过实验室辛烷值法测试的实际数值,再以0,1作为分类数值,本文档来自技高网
...

【技术保护点】
1.一种区分汽油牌号的现场快速检测方法,其特征在于,包括以下步骤:/nS1:收集多个汽油样品作为训练集;/nS2:使用便携式拉曼光谱仪测量各汽油样品的拉曼信号,得到各汽油样品的拉曼谱图及对应的光谱数据;/nS3:对所有样品的拉曼谱图进行预处理;/nS4:基于处理后的拉曼光谱数据,利用PLS-DA建立汽油牌号模型;/nS5:利用建立的汽油牌号模型对未参与建模的预测集进行预测。/n

【技术特征摘要】
1.一种区分汽油牌号的现场快速检测方法,其特征在于,包括以下步骤:
S1:收集多个汽油样品作为训练集;
S2:使用便携式拉曼光谱仪测量各汽油样品的拉曼信号,得到各汽油样品的拉曼谱图及对应的光谱数据;
S3:对所有样品的拉曼谱图进行预处理;
S4:基于处理后的拉曼光谱数据,利用PLS-DA建立汽油牌号模型;
S5:利用建立的汽油牌号模型对未参与建模的预测集进行预测。


2.根据权利要求1所述的一种区分汽油牌号的现场快速检测方法,其特征在于,S1中所述汽油样品包括92#、95#、98#汽油样品中的1个或多个。


3.根据权利要求1所述的一种区分汽油牌号的现场快速检测方法,其特征在于,S2中所述便携式拉曼光谱仪的激发波长为785nm,测量范围为173.69~3200.86cm-1,采集样品光谱信号时,积分时间设置为4000ms,激光强度设置为90%。


4.根据权利要求1所述的一种区分汽油牌号的现场快速检测方法,其特征在于,S3中所述预处理包括针对拉曼谱图中基线漂移或噪声现象,采用基线校正方法进行。


5.根据权利要求1所述的一种区分汽油牌号的现场快速检测方法,其特征在于,S4中所述汽油牌号模型的生成过程为:
以汽油样品的拉曼光谱数据作为自变量X矩阵,对应的牌号类别信息储层在矩阵Y中,再基于PLS-DA算法对训练集进行分类识别,得到汽油牌号的PLS回归模型。


6.根据权利要求5所述的一种区分汽油牌号的现场快速检测...

【专利技术属性】
技术研发人员:范宾薛晓康商照聪张小沁丁怡曼董学胜舒耀皋
申请(专利权)人:上海化工院检测有限公司上海化工研究院有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1