一种观察装置,其在光学观察系统从物镜到目镜延伸的观察路径上布置有一可变焦度透镜系统和一组成像透镜,其中: 在光学观察系统中,从物镜到可变焦度透镜系统延伸的光学观察系统形成一条观察路径,该路径用来将手术眼球眼底到可变焦度透镜系统的反射光束转换成平行光束;以及 在光学观察系统中,从可变焦度透镜系统到成像透镜延伸的光学观察系统形成一条观察路径,该路径用来将获得的、从可变焦度透镜系统到成像镜头成像透镜的反射光束转换成平行光束; 其中,光学观察系统从物镜到目镜的观察路径上有一个消除散光的光学元件,以便在光学元件,如棱镜或透镜,压在手术眼球上时用来消除散光。(*该技术在2022年保护过期,可自由使用*)
【技术实现步骤摘要】
本专利技术涉及一种观察装置如手术显微镜或裂隙灯的改进。支撑臂2由L形臂4和摇臂5构成。L形臂4与支撑臂2的顶端相连从而能水平旋转。摇臂5通过其内的一个弹簧向上偏移。臂6在支撑上可水平旋转,其布置在摇臂5的端部并向下。同时托架3与臂6相连。手术显微镜10连接在托架3上。手术显微镜10有一个镜筒11。镜筒11中有一个光学观察系统。镜筒11带有一个目镜镜筒11’。如图2所示,手术显微镜10具有例如一个光学照明系统12和一个光学观察系统13。其中光学照明系统12由照明光源14、一个聚光透镜15、一个照明场阑16、一个准直管透镜17以及一个棱镜18构成。附图标记18b表示棱镜18的反射面。来自照明光源14的照明光通过聚光透镜15、照明场阑16、准直管透镜17和棱镜18导引到光学观察系统13的物镜19上。然后再导引到例如手术眼球E的眼底Er,以便照亮眼底Er。注意,标记Ea表示手术眼球的瞳孔,Eb为虹膜,Ec为角膜。如图3所示,光学观察系统13由右眼光学观察系统13a和左眼光学观察系统13b构成。右眼光学观察系统13a包括一个由镜头20a、20b、20c构成的(可变焦距透镜系统)可变焦度透镜系统20、一个分束器21、一个成像透镜22、一个像转正棱镜23、一个光瞳调节棱镜24、一个场阑25以及一个目镜26。注意标记2a1表示入射光瞳,26a表示出射点。同样,左眼光学观察系统13b包括一个由透镜30a、30b、30c构成的(可变焦距透镜系统)可变焦度透镜系统30、一个分束器31、一个成像透镜32、一个像转正棱镜33、一个眼距调节棱镜34、一个场阑35以及一个目镜36。注意标记2b1表示入射光瞳,36a表示出射点。从被测眼球E的眼底Er反射回来的光束从光学观察系统13a和13b的物镜19到目镜26和36一直导向操作者的眼睛,从而使操作者能观察到眼底Er。从眼底Er反射回来的一部分光束通过分束器21和31分离并导向辅助光学观察系统40供助手和TV摄像系统50使用。图3中,41和51表示成像透镜,42和52表示反射镜,43表示目镜,TV摄像机53表示TV摄像机。TV摄像机53具有一个CCD成像元件,其用作图像接收装置53a。如图4所示,照明光学系统12的出射光瞳18a紧靠着光学观察系统13a和13b的观察路径2a2和2b2布置。图4中的标记O表示物镜19的光轴,O1表示左眼光学观察系统13a的观察光轴,O2表示右眼光学观察系统13b的观察光轴。顺便说一下,用这类手术显微镜来观察眼底及其周围情况是理想的。如图5所示,在这种情况下将一个光学元件如棱镜、透镜、接触棱镜或接触透镜(以下称为“光学元件”)60压在被测眼球E的瞳孔Ec,以便观察眼底Er的眼底周围部分Er’。在图5中,具有顶角θ(例如45度)的光学元件60压在瞳孔Ec上。因此,当光学元件60压在瞳孔Ec上时,物镜19的光轴O、光学照明系统12的照明光轴O’以及光学观察系统13a和13b的观察光轴O1和O2将被弯折从而观察到眼底的周围部分Er’。适当改变光学元件60的顶角θ,就能适当改变眼底周围部分Er’的观察点。然而,在使用光学元件60来观察眼底周围部分Er’时,由光线的折射和散射作用会产生散光和色差。图6所示为未将光学元件60压在手术眼球E上时,其散光的示意图。横坐标表示聚集位置假定为原始位置时前后散焦的散焦量。纵坐标表示点像Q在不同散焦位置时的尺寸和形状。当光学元件60未压在瞳孔Ec上时,即使散焦量相对聚焦量变大,点像Q也基本保持为圆形。与之相比,图7所示为将光学元件60压在手术眼球上时,其散光的示意图。横坐标表示前后散焦的散焦量。纵坐标表示点像Q在不同散焦位置时的尺寸和形状。当光学元件60压在瞳孔Ec上时,将出现散光。即,点像Q为圆形的位置会从聚焦位置偏移,并且当聚焦状态从前聚焦位变到后聚焦位时点像的形状将从纵椭圆形经最小的圆形变到横椭圆形。还有,图8所示为棱镜未压在手术眼球上时散光和色差的示意图。横坐标表示聚集位置假定为原始位置时前后散焦的散焦量。纵坐标表示点像Q在不同散焦位置时的尺寸和形状。当光学元件60未压在瞳孔Ec上时,即使散焦量相对聚焦量变大,点像Q也基本保持为圆形。同时,没有观察到图像被分开R、G、B的色差现象。只是随着散焦的增加才观察到一点点色差。因此,在聚焦位置观察时不会有什么问题。与之相比,图9所示为将光学元件60压在手术眼球E上时,其散光和色差的示意图。横坐标表示聚集位置假定为原始位置时前后散焦的散焦量。纵坐标表示点像Q在不同散焦位置时的尺寸和形状。当光学元件60压在瞳孔Ec上时,将出现散光。即,点像Q为圆形的位置会从聚焦位置偏移,并且当聚焦状态从前聚焦位变到后聚焦位时点像的形状将从纵椭圆形经最小的圆形变到横椭圆形。同时,即使在聚焦位置光学元件60的折射作用也会引起色差。这里,色差用三种颜色G、R和B来表示。其中颜色分离的方向就是光学元件60折射作用的方向,在本例中就是纵坐标的方向。因此,如附图说明图10所示,当色差出现时,即使消除了散光,色差也依旧存在。当把光学元件60压在手术眼球E的瞳孔Ec上并且对眼底周围部分Er’进行观察时,将出现散光和色差现象,眼底图像会因颜色的分离而被扭曲。因此,不能观察到眼底周围部分Er’的清晰图像,难以对眼底周围部分Er’进行手术。特别是在对眼内植有眼内镜片(IOL)眼球进行手术时,散光和色差的影响更大。由此,更加难以观察到图像锐利的眼底周围部分Er’。此外,在将光学元件60压在手术眼球E的角膜上并用激光进行眼球凝结治疗时,也会产生散光现象。本专利技术的第二个目的是提供一种能够消除色差的观察装置。本专利技术的第三个目的是提供一种用来进行眼底治疗的观察装置。本专利技术的第一方面是提供一种观察装置,其在光学观察系统从物镜到目镜的观察路径上布置有一可变焦度透镜系统和一组成像透镜,其中在光学观察系统中,从物镜到可变焦度透镜系统延伸的光学观察系统形成一条观察路径,该路径用来将手术眼球眼底到可变焦度透镜系统的反射光束转换成平行光束;以及在光学观察系统中,从可变焦度透镜系统到成像透镜延伸的光学观察系统形成一条观察路径,该路径用来将获得的、从可变焦度透镜系统到成像镜头成像透镜的反射光束转换成平行光束;其特征在于光学观察系统从物镜到目镜的观察路径上有一个消除散光的光学元件,以便在棱镜压在手术眼球上时用来消除棱镜引起的散光。本专利技术的第二方面是提供一种观察装置,其特征在于消除散光的光学元件布置在可变焦度透镜系统和成像透镜之间。本专利技术的第三方面是提供一种观察装置,其特征在于消除散光的光学元件布置在物镜和可变焦度透镜系统之间。本专利技术的第四方面是提供一种观察装置,消除散光的光学元件由一对可变柱面透镜构成,这两个柱面透镜能相对彼此绕观察路径的观察光轴转动,该消除散光的光学元件还包括一校正镜头,其用来校正正的、负的散光量。本专利技术的第五方面是提供一种观察装置,其包括有散光校正量自动变化装置,该散光校正量自动变化装置能对这种随着观察放大倍数一起变化的散光进行校正,其特征在于该散光校正量自动变化装置包括有可变柱面透镜旋转装置,以便旋转该可变柱面透镜,并且该可变柱面透镜旋转装置能根据散光校正量使可变柱面透镜相对彼此绕观察光轴转动以便改变其焦度而本文档来自技高网...
【技术保护点】
【技术特征摘要】
【专利技术属性】
技术研发人员:福间康文,乡庭秀刚,
申请(专利权)人:株式会社拓普康,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。