当前位置: 首页 > 专利查询>南华大学专利>正文

基于Micromegas的裂变室制造技术

技术编号:26789139 阅读:9 留言:0更新日期:2020-12-22 17:03
本发明专利技术公开了一种基于Micromegas的裂变室,包括Micromegas探测器,所述Micromegas探测器具有金属外壳,设于金属外壳内的漂移电极、Micromegas微网和收集电极,Micromegas微网设于漂移电极和收集电极之间;收集电极与脉冲信号采集电路电连接;Micromegas微网与漂移电极之间形成漂移区,Micromegas微网与收集电极之间形成收集区;金属外壳、漂移电极和收集电极之间围成气室,气室内设有流动的电离气体;所述漂移区内还设有若干铝板;各铝板与漂移电极垂直,各铝板的一边与漂移电极固连;各铝板的两侧面均设有铀‑235层。本发明专利技术探测效率高,灵敏度高,计数率量程高;具有更好的抗干扰能力,更强的n/γ甄别能力,特别适合于反应堆等强电磁干扰与强γ辐射场环境的中子注量率的实时监测。

【技术实现步骤摘要】
基于Micromegas的裂变室
本专利技术属于裂变室领域,特别涉及一种基于Micromegas的裂变室。
技术介绍
从反应堆启动至满功率运行,其核功率的动态变化范围会达到10个数量级,相应的中子注量率变化范围将达到11个数量级(100~1011n/cm2.s),出于次临界度、控制和安全目的,必须在反应堆运行的所有阶段监测堆芯中子注量率及其变化,另一方面,反应堆周围γ强度非常高,因此,用于反应堆中子注量率监测的中子探测器需要具备两个方面的条件,一是探测器量程要宽,二是探测器n/γ甄别能力要强。由于一般的中子探测器量程有限,很难覆盖跨度这么大的测量范围,目前反应堆中子注量率监测方案主要有两类。第一类是把全程的测量范围分成好几段测量通道,分别配以不同的中子探测器来进行分段接力测量,此类方案最主要的缺点是探测器数目多,系统结构复杂;另一类是裂变室宽量程方案,利用裂变室自身具有的三种工作模式,即脉冲计数模式、坎贝尔模式、电流模式,组合起来能够覆盖反应堆运行的所有阶段中子注量率变化范围,此方案的优点是减少了探测器,简化了探测系统的结构,但也存在着如下问题:裂变室热中子探测灵敏度不高(10-1~100cps/nv)、计数率动态范围小(上限105~106cps)、监测模式切换繁琐等问题,其应用于大型商用反应堆技术尚不成熟。
技术实现思路
本专利技术的目的在于,针对当前裂变室监测反应堆从启动到满功率过程中热中子灵敏度不高、计数率动态范围小、监测模式切换繁琐的不足,提供一种基于Micromegas的裂变室,灵敏度高,计数率量程高,以期实现在单一脉冲模式下对反应堆从物理启动到满功率运行过程的中子注量率监测全覆盖。为解决上述技术问题,本专利技术所采用的技术方案是:一种基于Micromegas的裂变室,包括Micromegas探测器,所述Micromegas探测器具有金属外壳,设于金属外壳内的漂移电极、Micromegas微网和收集电极,Micromegas微网设于漂移电极和收集电极之间;漂移电极、Micromegas微网外加负电压,加在漂移电极上的负电压的电压绝对值大于加在Micromegas微网上的负电压的电压绝对值,收集电极接地;收集电极与脉冲信号采集电路电连接;Micromegas微网与漂移电极之间形成漂移区,Micromegas微网与收集电极之间形成收集区;金属外壳、漂移电极和收集电极之间围成气室,气室内设有流动的电离气体;其特点是所述漂移区内还设有若干铝板;各铝板与漂移电极垂直,各铝板的一边与漂移电极固连;各铝板的两侧面均设有铀-235层。作为一种优选方式,所述脉冲信号采集电路读取方式为盘阵列或像素读出方式。作为一种优选方式,铝板的数量为80~100,铀-235层的厚度为5~6mg/cm2。作为一种优选方式,各铝板高度为10~20mm;Micromegas微网与各铝板下边沿之间的间距为3~5mm。作为一种优选方式,Micromegas微网与收集电极之间的间距为100-500μm。作为一种优选方式,脉冲信号采集电路的甄别阈为α粒子最大沉积能量。作为一种优选方式,Micromegas探测器的增益为100~101。作为一种优选方式,电离气体由氩气和二氧化碳组成,其中氩气与二氧化碳的体积比为(7~9):(3~1);漂移区的场强为1000~2500V/cm;收集区的场强为4×104V/cm~5×104V/cm。作为一种优选方式,氩气与二氧化碳的体积比为4:1;收集区的场强为4.5×104V/cm。Micromegas探测器为微网结构气体探测器(Micro-MeshGaseousStructure,Micromegas),由于Micromegas探测器易于大面积制作,因而能够有效提高热中子探测灵敏度;又由于Micromegas可以采用像素(pad或pixel)读出方式,因而具有很高的计数率能力,这一优点可以用来扩展其计数率量程。本专利技术利用Micromegas探测器易于大面积制作、高计数率的优点,设计一种基于Micromegas的裂变室,该裂变室通过在Micromegas漂移电极上设置铀-235层作为热中子转化体来实现,其基本原理是,热中子诱发235U裂变反应,裂变碎片有一定的概率穿过铀-235层进入Micromegas探测器气室内的电离气体中从而被探测到。本专利技术灵敏度高,计数率量程高,以期实现在单一脉冲模式下对反应堆从物理启动到满功率运行过程的中子注量率监测全覆盖;基于Micromegas的裂变室具有比普通裂变室更好的抗干扰能力,比涂10B的Micromegas中子探测器更强的n/γ甄别能力,特别适合于反应堆等强电磁干扰与强γ辐射场环境的中子注量率的实时监测。附图说明图1为本专利技术基于Micromegas的裂变室结构示意图(移除金属外壳后)。图2为基于Micromegas的裂变室模拟流程图。图3为不同铝板数量下转化效率随转化层厚度的变化(金属U)。图4为转化效率及最佳转化层厚度随铝板数量的变化(金属U)。图5为转化效率及最佳转化层厚度随铝板数量的变化(U3O8)。图6为不同漂移区间距裂变碎片平均沉积能量图。图7为裂变碎片与α粒子沉积能量谱。其中,1为Micromegas探测器,101为漂移电极,102为Micromegas微网,103为收集电极,104为漂移区,105为收集区,106为气室,107为铀-235层,108为铝板,HV1-为漂移极高压电源,HV2-为微网高压电源,C为电容,R1为第一电阻,R2为第二电阻。具体实施方式如图1所示,基于Micromegas的裂变室包括Micromegas探测器1,所述Micromegas探测器1具有金属外壳,设于金属外壳内的漂移电极101、Micromegas微网102和收集电极103,Micromegas微网102设于漂移电极101和收集电极103之间。收集电极103的信号经前置放大后被读取。漂移电极101、Micromegas微网102外加负电压,加在漂移电极101上的负电压的电压绝对值大于加在Micromegas微网102上的负电压的电压绝对值,收集电极103接地。具体由下述结构实现:如图1,微网高压电源HV2-通过电容C接地,电容C起到滤除杂波的作用。同时,微网高压电源HV2-与Micromegas微网电连接。漂移极高压电源HV1-依次通过第一电阻R1、第二电阻R2接地。收集电极103与脉冲信号采集电路电连接;Micromegas微网102与漂移电极101之间形成漂移区104,Micromegas微网102与收集电极103之间形成收集区105;金属外壳、漂移电极101和收集电极103之间围成气室106,气室106内设有流动的电离气体;所述漂移区104内还设有若干铝板108;各铝板108与漂移电极101垂直,各铝板108的一边与漂移电极101固连;各铝板108的两侧面均设有铀-235层107。各铝板本文档来自技高网...

【技术保护点】
1.一种基于Micromegas的裂变室,包括Micromegas探测器(1),所述Micromegas探测器(1)具有金属外壳,设于金属外壳内的漂移电极(101)、Micromegas微网(102)和收集电极(103),Micromegas微网(102)设于漂移电极(101)和收集电极(103)之间;漂移电极(101)、Micromegas微网(102)外加负电压,加在漂移电极(101)上的负电压的电压绝对值大于加在Micromegas微网(102)上的负电压的电压绝对值,收集电极(103)接地;收集电极(103)与脉冲信号采集电路电连接;Micromegas微网(102)与漂移电极(101)之间形成漂移区(104),Micromegas微网(102)与收集电极(103)之间形成收集区(105);金属外壳、漂移电极(101)和收集电极(103)之间围成气室(106),气室(106)内设有流动的电离气体;其特征在于,所述漂移区(104)内还设有若干铝板(108);各铝板(108)与漂移电极(101)垂直,各铝板(108)的一边与漂移电极(101)固连;各铝板(108)的两侧面均设有铀-235层(107)。/n...

【技术特征摘要】
1.一种基于Micromegas的裂变室,包括Micromegas探测器(1),所述Micromegas探测器(1)具有金属外壳,设于金属外壳内的漂移电极(101)、Micromegas微网(102)和收集电极(103),Micromegas微网(102)设于漂移电极(101)和收集电极(103)之间;漂移电极(101)、Micromegas微网(102)外加负电压,加在漂移电极(101)上的负电压的电压绝对值大于加在Micromegas微网(102)上的负电压的电压绝对值,收集电极(103)接地;收集电极(103)与脉冲信号采集电路电连接;Micromegas微网(102)与漂移电极(101)之间形成漂移区(104),Micromegas微网(102)与收集电极(103)之间形成收集区(105);金属外壳、漂移电极(101)和收集电极(103)之间围成气室(106),气室(106)内设有流动的电离气体;其特征在于,所述漂移区(104)内还设有若干铝板(108);各铝板(108)与漂移电极(101)垂直,各铝板(108)的一边与漂移电极(101)固连;各铝板(108)的两侧面均设有铀-235层(107)。


2.如权利要求1所述的基于Micromegas的裂变室,其特征在于,所述脉冲信号采集电路读取方式为盘阵列或像素读出方式。


3.如权利要求1所述的基于Micromegas的裂变...

【专利技术属性】
技术研发人员:贺三军赵修良王晓冬周超赵越胡创业刘丽艳
申请(专利权)人:南华大学
类型:发明
国别省市:湖南;43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1