一种视频目标检测方法、装置、设备以及存储介质制造方法及图纸

技术编号:26764092 阅读:35 留言:0更新日期:2020-12-18 23:34
本申请适用于计算机技术领域,提供了一种视频目标检测方法、视频目标检测装置、视频目标检测设备及存储介质,包括:获取待检测视频中的目标视频帧以及支撑视频帧;将目标视频帧以及支撑视频帧输入到已训练的视频目标检测模型中处理,得到目标物体对应的检测结果。上述方式,视频目标检测模型基于训练样本视频集中各个视频内的物体相似度以及训练样本视频集中各个视频间的物体相似度生成,不仅考虑到了各个视频内的物体相似度,还考虑到了各个视频间的物体相似度。使用该视频目标检测模型提取到的目标视频帧的目标物体对应的特征更准确、信息更丰富,进而根据目标物体对应的特征确定检测结果时,得到的检测结果更准确。

【技术实现步骤摘要】
一种视频目标检测方法、装置、设备以及存储介质
本申请属于计算机
,尤其涉及一种视频目标检测方法、视频目标检测装置、视频目标检测设备以及存储介质。
技术介绍
视频目标检测是指利用视频序列特征,对视频序列中的帧图像中的目标物体进行定位与识别。该视频目标检测在自动驾驶、智能交通分析、智能安防以及野外动物监控等领域均有重要意义。目前,视频目标检测的方法为采用深度学习构建的网络模型对视频序列中的帧图像进行处理,得到该帧图像对应的检测结果。然而,现有的网络模型在构建过程中仅考虑视频内各个物体的相似性,导致该网络模型提取到的帧图像所对应的物体特征单薄、不准确,进而导致该网络模型对帧图像中物体的检测结果不准确。
技术实现思路
有鉴于此,本申请实施例提供了一种视频目标检测方法、视频目标检测装置、视频目标检测设备以及存储介质,以解决传统的视频目标检测方法对视频检测结果不准确的问题。本申请实施例的第一方面提供了一种视频目标检测方法,包括:获取待检测视频中的目标视频帧以及支撑视频帧;所述目标视频帧为所述待检测视频中包含目标物体的任一帧本文档来自技高网...

【技术保护点】
1.一种视频目标检测方法,其特征在于,包括:/n获取待检测视频中的目标视频帧以及支撑视频帧;所述目标视频帧为所述待检测视频中包含目标物体的任一帧视频帧;所述支撑视频帧包括所述待检测视频中除所述目标视频帧外的至少一个视频帧;/n将所述目标视频帧以及所述支撑视频帧输入到已训练的视频目标检测模型中处理,得到所述目标物体对应的检测结果;所述检测结果包括所述目标物体对应的类别和位置信息;其中,所述视频目标检测模型基于训练样本视频集中各个视频内的物体相似度以及训练样本视频集中各个视频间的物体相似度生成。/n

【技术特征摘要】
1.一种视频目标检测方法,其特征在于,包括:
获取待检测视频中的目标视频帧以及支撑视频帧;所述目标视频帧为所述待检测视频中包含目标物体的任一帧视频帧;所述支撑视频帧包括所述待检测视频中除所述目标视频帧外的至少一个视频帧;
将所述目标视频帧以及所述支撑视频帧输入到已训练的视频目标检测模型中处理,得到所述目标物体对应的检测结果;所述检测结果包括所述目标物体对应的类别和位置信息;其中,所述视频目标检测模型基于训练样本视频集中各个视频内的物体相似度以及训练样本视频集中各个视频间的物体相似度生成。


2.如权利要求1所述的视频目标检测方法,其特征在于,所述将所述目标视频帧以及所述支撑视频帧输入到已训练的视频目标检测模型中处理,得到所述目标视频帧对应的检测结果之前,还包括:
基于初始视频目标检测网络、所述训练样本视频集中各个视频内的物体相似度、所述训练样本视频集中各个视频间的物体相似度以及候选物体关系规约生成所述视频目标检测模型;所述候选物体关系规约用于在所述初始视频目标检测网络训练过程中约束各个候选物体之间的关系。


3.如权利要求2所述的视频目标检测方法,其特征在于,所述基于初始视频目标检测网络、所述训练样本视频集中各个视频内的物体相似度、所述训练样本视频集中各个视频间的物体相似度以及候选物体关系规约生成所述视频目标检测模型,包括:
在所述初始视频目标检测网络中基于在所述训练样本视频集中选取的样本视频以及支撑视频构建视频三元组;所述训练样本视频集包括多个视频以及每个视频中包含的每个物体所对应的样本物体特征;
基于所述视频三元组中每个视频所对应的物体特征,构建候选物体三元组;
基于所述候选物体三元组中每个候选物体对应的物体特征,确定样本视频中目标视频帧所对应的目标候选物体特征;
基于所述候选物体三元组中每个候选物体对应的物体特征,构建所述候选物体关系规约;
对所述目标候选物体特征进行识别与定位,得到所述样本视频中目标视频帧对应的检测结果;
根据预设的损失函数计算所述目标候选物体特征与样本物体特征之间的损失值;
当所述损失值或所述候选物体关系规约不满足预设条件时,调整所述初始视频目标检测网络的网络参数,并返回继续训练所述初始视频目标检测网络;当所述损失值以及所述候选物体关系规约均满足所述预设条件时,停止训练所述初始视频目标检测网络,并将训练后的所述初始视频目标检测网络作为所述视频目标检测模型。


4.如权利要求3所述的视频目标检测方法,其特征在于,所述支撑视频的数量不少于三个;所述在所述初始视频目标检测网络中基于在所述训练样本视频集中选取的样本视频以及支撑视频构建视频三元组,包括:
获取所述样本视频对应的第一特征向量,以及获取每个所述支撑视频对应的第二特征向量;
确定所述第一特征向量与每个所述第二特征向量之间的相似度;
基于所述相似度在多个所述支撑视频中选取目标支撑视频,并基于所述样本视频以及所述目标支撑视频构建所述视频三元组。


5.如权利要求3所述的视频目标检测方法,其特征在于,所述基于所述视频三元组中每个视频所对应的物体特征,构建候选物体三元组,包括:
基于所述视频三元组中每个视频所对应的物体特征,确定所述每个视频对应的第一物体相似度;所述第一物体相似度为所述每个视频内包含的物体之间的相似度;
基于每个所述第一物体相似度确定目标候选物体,并基于所述目标候选物体构建所述候选物体三元组。

【专利技术属性】
技术研发人员:韩鸣飞王亚立乔宇
申请(专利权)人:中国科学院深圳先进技术研究院
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1