本发明专利技术公开一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法及其产品,制备方法包括以下步骤,取硝酸铥、硝酸镱、铟源和硫源溶于水中,搅拌得到前驱体溶液置于反应釜中,将导电玻璃导电面朝下靠在反应釜中,在170℃~200℃下保温20h~24h,取出、干燥得到所述稀土掺杂硫化铟纳米片薄膜光电阳极;本发明专利技术通过在硫化铟纳米片薄膜中进行铥离子和镱离子掺杂,显著提高了硫化铟纳米片薄膜光电阳极的光电流密度以及光电化学性能。
【技术实现步骤摘要】
一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法及其产品
本专利技术涉及光电催化
,具体涉及一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法及其产品。
技术介绍
硫化铟(In2S3)具有良好的窄带隙、高稳定性、低毒性等特性,以及包括纳米片、纳米管、纳米棒和空心微球在内的多种形貌,这使得它不仅可以作为宽光谱光催化/光电催化剂的良好候选物,而且可以作为宽带隙光催化/光电催化剂的优良敏化剂。然而,In2S3的光催化/光电催化效率仍然较低,这是由于自身的光生载流子快速复合。到现在为止,有很多方法已被用来提升In2S3的光催化/光电催化效率,包括有控制地合成In2S3的不同的形态纳米结构,例如,纳米管、纳米片和微球,或者In2S3与其他物质的半导体复合材料(如TiO2),或者In2S3与其它碳纳米材料(例如石墨烯和碳纳米管)的复合材料。过渡金属离子掺杂可以有效抑制光生电子和空穴的复合,此外掺杂过渡金属离子还可以导致带隙减小或带隙内态形成,以便更有效的增强光吸收和捕获-释放电子,当前围绕过渡金属离子掺杂半导体光催化/光电催化纳米材料的研究较多,取得系列研究成果。与过渡金属离子不同,三价镧系稀土离子具有丰富的能级结构和优异的光学特性近来受到研究人员的关注,有关这方面的研究报道目前很少,将稀土离子共掺杂有望实现稀土离子能级的协同效用,高效抑制光生电子和空穴的复合。因此,获得一种光谱响应特性好、太阳能利用率高、光催化/光电催化性能好的稀土元素共掺杂硫化铟纳米材料对于实现太阳能的最大化利用以及解决环境和能源问题具有重要意义。
技术实现思路
为解决上述技术问题,本专利技术提供一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法及其产品。本专利技术提供一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法,包括以下步骤,取硝酸铥、硝酸镱、铟源和硫源溶于去离子水中,搅拌得到前驱体溶液置于反应釜中,将导电玻璃导电面朝下靠在反应釜中,在170℃~200℃下保温20h~24h,冷却、取出、干燥得到所述稀土掺杂硫化铟纳米片薄膜光电阳极。优选的,所述导电玻璃为FTO导电玻璃,进行薄膜制备前分别利用丙酮、乙醇和去离子水超声清洗各30min。优选的,所述硫源为硫代乙酰胺,所述铟源为四水合三氯化铟,搅拌时间30min~1h。优选的,四水合三氯化铟、硝酸镱、硝酸铥的物质的量之比为197:2:1~189:10:1,阳离子的物质的量之和与硫代乙酰胺的物质的量之比为1:2.6~1:3。优选的,所述稀土掺杂硫化铟纳米片薄膜光电阳极中镱离子的掺杂物质的量比例为1%~5%,铥离子的掺杂物质的量比例为0.5%。掺杂量过大会导致半导体敏化上转换中Yb-Tm之间的能量传递效率显著降低。优选的,所述前驱体溶液中硝酸铥、硝酸镱、四水合三氯化铟的物质的量浓度之和为24mM~33mM。本专利技术还提供上述的稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法所制备的稀土掺杂硫化铟纳米片薄膜光电阳极。与现有技术相比,本专利技术具有以下有益效果:1.创新的提出了半导体敏化上转换策略,利用β-In2S3半导体光生电子空穴对的无辐射复合方式将能量转移,以掺杂稀土元素后形成的缺陷能级为桥梁,实现对稀土离子Yb3+的高效敏化,并进一步完成上转换过程,Tm3+的能量通过无辐射跃迁的方式再一次被β-In2S3所利用,最终实现抑制光生载流子的复合,提升β-In2S3的光电化学性能。与现有技术中利用近红外光直接激发相比,这种半导体敏化策略更加有效。2.将稀土元素直接掺杂在β-In2S3晶格内部,使得能量在β-In2S3自身能级结构内部完成,其能量敏化传递尺度远远小于5nm,因此具有更高的能量传递效率。3.β-In2S3本身存在的S空位或阳离子空位等本征缺陷,以及掺杂稀土的元素的影响,在导价带之间形成中间能级,靠近导带的能级成为电子供给态,能捕获电子并缓慢释放至导带,有效抑制电子空穴对的复合。3.实验结果证明了当掺杂浓度过大,这种半导体敏化效率会降低,进而导致能量传递效率降低,促进电子空穴对复合,降低光电化学性能。附图说明图1为实施例1(YTS-1)、实施例2(YTS-3)和实施例3(YTS-5)制备的薄膜的光电流响应-时间曲线图;图2为实施例2(YTS-3)制备的薄膜的扫描电子显微镜图;具体实施方式现详细说明本专利技术的多种示例性实施方式,该详细说明不应认为是对本专利技术的限制,而应理解为是对本专利技术的某些方面、特性和实施方案的更详细的描述。应理解本专利技术中所述的术语仅仅是为描述特别的实施方式,并非用于限制本专利技术。另外,对于本专利技术中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本专利技术内。这些较小范围的上限和下限可独立地包括或排除在范围内。除非另有说明,否则本文使用的所有技术和科学术语具有本专利技术所述领域的常规技术人员通常理解的相同含义。虽然本专利技术仅描述了优选的方法和材料,但是在本专利技术的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。在不背离本专利技术的范围或精神的情况下,可对本专利技术说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本专利技术的说明书得到的其他实施方式对技术人员而言是显而易见得的。本申请说明书和实施例仅是示例性的。关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。实施例1该实施例制备β-In2S3:Yb3+-Tm3+薄膜光电极材料,In3+:Yb3+:Tm3+=197:2:1所用原料见表1:表1制备方法:1)首先清洗FTO玻璃,将FTO玻璃分别放在去离子水、乙醇、丙酮中各超声处理30min吹干以待备用。2)称量氯化铟,硫代乙酰胺,硝酸镱,硝酸铥,以及40ml去离子水,转移至烧杯中搅拌30min,其中氯化铟,硫代乙酰胺,硝酸镱,硝酸铥的物质的量分别为0.9456mmol,2.88mmol,0.0096mmol,0.0048mmol,保证In3+:Yb3+:Tm3+=197:2:1,S2-的物质的量是所有阳离子物质的量之和的3倍,氯化铟,硝酸镱,硝酸铥的浓度为24mM,硫代乙酰胺的浓度为72mM。将搅拌好的溶液转移至高压反应釜中,并把FTO玻璃导电面朝下靠在反应釜中,在180℃下保温24h,保温结束后,打开反应釜,待其降至室温,打开反应釜,将制备好的薄膜(YTS-1)取出,用去离子水冲洗干燥。制备得到的薄膜形貌为紧密的铺开在FTO导电面上的纳米片。经检测所制得的YTS-1光电流密度达到0.35mA/cm2,与纯的β-In2S3相比光电化学性能有本文档来自技高网...
【技术保护点】
1.一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法,其特征在于,包括以下步骤,取硝酸铥、硝酸镱、铟源和硫源溶于去离子水中,搅拌得到前驱体溶液置于反应釜中,将导电玻璃导电面朝下靠在反应釜中,在170℃~200℃下保温20h~24h,冷却、取出、干燥得到所述稀土掺杂硫化铟纳米片薄膜光电阳极。/n
【技术特征摘要】
1.一种稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法,其特征在于,包括以下步骤,取硝酸铥、硝酸镱、铟源和硫源溶于去离子水中,搅拌得到前驱体溶液置于反应釜中,将导电玻璃导电面朝下靠在反应釜中,在170℃~200℃下保温20h~24h,冷却、取出、干燥得到所述稀土掺杂硫化铟纳米片薄膜光电阳极。
2.根据权利要求1所述的稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法,其特征在于,所述导电玻璃为FTO导电玻璃,进行薄膜制备前分别利用丙酮、乙醇和去离子水超声清洗各30min。
3.根据权利要求1所述的稀土掺杂硫化铟纳米片薄膜光电阳极的制备方法,其特征在于,所述硫源为硫代乙酰胺,所述铟源为四水合三氯化铟,搅拌时间30min~1h。
4.根据权利要求3所述的稀土掺杂硫化铟纳米片薄...
【专利技术属性】
技术研发人员:胡晓云,李秋洁,苗慧,樊君,刘恩周,成宇飞,王佳伟,张德恺,赵俊峰,
申请(专利权)人:西北大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。