【技术实现步骤摘要】
一种兼顾通用性与个性化的活动识别模型与系统
本专利技术涉及人工智能
,尤其涉及一种兼顾通用性与个性化的活动识别模型与系统。
技术介绍
在工业生产、健康监护、安全检测、智能家居等场景中,活动识别扮演着非常重要的角色。为识别用户的活动,当前的方法要求用户提供大量有标签数据以训练可靠的活动识别模型。然而,由于用户之间的体态特征、行为习惯存在差异,已有的识别模型难以直接用于识别新用户的活动。因此,新用户依然需要提供大量的数据来调整识别模型参数或重新训练一个合适的活动识别模型,极大降低了用户体验。为减少新用户的训练成本,一类方法通过训练通用模型的方法,以提升模型的泛化能力。如现有技术中公开号为CN109086704A的专利文献所提出的一种基于稀疏表示和Softmax分类的人体活动识别方法,步骤S1:使用海量的无线传感器活动信号数据集训练Softmax模型;步骤S2:使用经过训练的Softmax模型对实时检测的活动信号进行分类和识别。采用该专利技术的技术方案,将数据库中的海量传感器活动信号数据集进行训练,确定信号的所属类别 ...
【技术保护点】
1.一种兼顾通用性与个性化的活动识别系统,包括由至少一个数据采集终端、至少一个边缘计算设备与云端计算平台所共同搭建的通信构架,所述活动识别系统借助于所述通信构架进行人员活动识别及模型更新,其中,所述边缘计算设备中至少包括:/n数据预处理模块,用于对所接收到的由所述数据采集终端所采集的感知信号进行预处理以得到第一数据,/n其特征在于所述边缘计算设备还包括模型训练模块和活动识别模块,其中:/n所述模型训练模块基于对用户ID的持续验证来调取本地活动识别模型,并利用所述第一数据以用户个性化特征与模型通用性特征相融合的方式训练所述本地活动识别模型的通用化网络结构和个性化网络结构,以使 ...
【技术特征摘要】
1.一种兼顾通用性与个性化的活动识别系统,包括由至少一个数据采集终端、至少一个边缘计算设备与云端计算平台所共同搭建的通信构架,所述活动识别系统借助于所述通信构架进行人员活动识别及模型更新,其中,所述边缘计算设备中至少包括:
数据预处理模块,用于对所接收到的由所述数据采集终端所采集的感知信号进行预处理以得到第一数据,
其特征在于所述边缘计算设备还包括模型训练模块和活动识别模块,其中:
所述模型训练模块基于对用户ID的持续验证来调取本地活动识别模型,并利用所述第一数据以用户个性化特征与模型通用性特征相融合的方式训练所述本地活动识别模型的通用化网络结构和个性化网络结构,以使得所述活动识别模块基于训练后得到的所述本地活动识别模型所进行的人员活动识别过程兼顾通用性与个性化。
2.根据权利要求1所述的活动识别系统,其特征是,所述模型训练模块将其基于训练前的本地活动识别模型与训练后得到的本地活动识别模型所计算生成的第二数据上传至云端计算平台,所述云端计算平台中维护有至少一个通用模型并在由各模型训练模块所上传的第二数据满足预设的模型更新条件时对所述通用模型进行参数调整。
3.根据权利要求2所述的活动识别系统,其特征是,所述模型训练模块基于对用户ID的持续验证可以得到新用户信息或已注册用户信息,在当前用户ID为新用户信息时,调取所述云端计算平台中的通用模型作为本地活动识别模型,或在当前用户ID为已注册用户信息时,调取所述活动识别模块中与当前用户相对应的至少经过一次活动识别训练的本地活动识别模型。
4.根据权利要求3所述的活动识别系统,其特征是,在当前用户ID为新用户信息时,所述模型训练模块是以保留通用化网络结构的融合结果并对个性化网络结构的参数进行初始化的方式来训练其从云端计算平台所调取确定的所述本地活动识别模型。
5.根据权利要求4所述的活动识别系统,其特征是,所述云端计算平台中预设的模型更新条件指的是当完成更新的本地活动识别模型的数量占比超出给定的阈值时,即开始更新云端计算平台中的通用模型。
6.根据权利要求5所述的活动识别系统,其特征是,所述通用模型的更新是通过:
各边缘计算设备利用本地数据计算模型更新梯度,使用加密技术对梯度进行加密,然后将加密梯度发送到云端计算平台;和/或
云端计算平台在不了解任何边缘计算设备信...
【专利技术属性】
技术研发人员:肖江,吴敏睿,李辉楚吴,金海,
申请(专利权)人:华中科技大学,
类型:发明
国别省市:湖北;42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。