一种深度学习目标检测算法辅助的无人机图像标注方法技术

技术编号:26419692 阅读:30 留言:0更新日期:2020-11-20 14:15
本发明专利技术提供了一种基于深度学习目标检测算法辅助的无人机图像标注方法,属于无人机图像处理领域。本发明专利技术针对无人图像标注的两种场景,提出不同方案:全图标注场景,利用其他少量公开无人机图像数据集对检测网络进行初始训练,将未标注图像按照目标数由少到多分组的顺序输入网络进行前向推断、自动处理和人工修正后都将该组图像加入原数据集对网络重新进行训练,以便对下一组图像有更好的检测性能;图像部分区域标注场景,利用在数据集有标注区域随机裁切的未标注区域相似大小的子图像对检测网络进行训练,进而对未标注区域进行标注处理。本发明专利技术方法极大地减轻了无人机图像标注所需的人力物力,提升了标注的速度和精度。

【技术实现步骤摘要】
一种深度学习目标检测算法辅助的无人机图像标注方法
本专利技术属于无人机图像处理领域,具体涉及一种基于深度学习目标检测算法辅助的无人机图像标注方法。
技术介绍
无人机图像是指由无人机机上成像平台采集得到的对地遥感图像,随着近年来航空成像设备成像质量的不断提高和民用无人机的普及,无人机图像在各领域都得到了广泛的应用,其中包括基于深度学习的车流人流监测以及移动目标追踪等等。这也对带标注的无人机图像数据集提出了更广泛的需求。与常规场景图像不同,无人机图像的尺寸往往较大,覆盖地表范围广,典型目标分布密集数量众多,人工标注一张无人机图像往往需要耗费数分钟,这在需要大量带标注训练数据的任务中所需要的时间成本是难以忍受的。近年来,基于深度学习的目标检测方法逐渐成熟,相比基于传统图像处理的旧式检测方法在检测精度上得到极大的提高。目前基于深度学习的目标检测方法主要分为两种:即单阶段检测和双阶段检测。单阶段检测法直接根据预设的边界框对落在该边界框范围内的物体进行分类和位置坐标回归;而双阶段检测法首先通过候选区域生成网络得到可能属于目标的区域,再将其输本文档来自技高网...

【技术保护点】
1.一种深度学习目标检测算法辅助的无人机图像标注方法,采用深度学习算法搭建目标检测网络,其特征在于,所述的标注方法包括:/n(一)针对全图像标注情况,执行如下步骤:/n步骤1.1,对深度学习目标检测网络,首先利用已公开的与待标注目标相同类别的无人机图像数据集进行训练;/n步骤1.2,将未标注的无人机图像按照待标注目标的数量分为三组,分别标记为少量目标组、中等量目标组和大量目标组,按顺序取一组图像进入步骤1.3执行;/n步骤1.3,将当前一组图像输入当前训练好的目标检测网络做前向推断,对每张图像获得待识别目标的检测框和分数,保存分数>α

【技术特征摘要】
1.一种深度学习目标检测算法辅助的无人机图像标注方法,采用深度学习算法搭建目标检测网络,其特征在于,所述的标注方法包括:
(一)针对全图像标注情况,执行如下步骤:
步骤1.1,对深度学习目标检测网络,首先利用已公开的与待标注目标相同类别的无人机图像数据集进行训练;
步骤1.2,将未标注的无人机图像按照待标注目标的数量分为三组,分别标记为少量目标组、中等量目标组和大量目标组,按顺序取一组图像进入步骤1.3执行;
步骤1.3,将当前一组图像输入当前训练好的目标检测网络做前向推断,对每张图像获得待识别目标的检测框和分数,保存分数>α1的检测结果,α1为预先设置的阈值;再根据无人机高度与所拍摄的目标类别的尺寸限制,设置对应类别目标的检测框的尺度范围,将保存的检测结果中超过设置的尺度范围的检测框去除;
步骤1.4,将保存的检测结果导入标注软件,对漏检和错检的检测结果进行人工修正;
步骤1.5,将标注好的图像组按照设定比例随机划分成训练集和验证集,汇入已有的训练目标检测网络的数据集,再重新对目标检测网络进行训练;
步骤1.6,判断是否遍历完所有图像组,如果遍历完则输出所有图像的标注结果,若未遍历完,继续取下一组图像进入步骤1.3执行;
(二)针对图像部分区域标注情况,需要对图片中含有目标但未进行标注的忽略区域进行标注,执行如下步骤:
步骤2.1,将数据集图片中的忽略区域从原图中裁切出来保存,并对忽略区域的尺度进行k均值聚类,得到k个不同尺度的聚类结果,k为正整数;
步骤2.2,利用无人机图像数据集...

【专利技术属性】
技术研发人员:李红光王蒙丁文锐
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1