一种针对病理全场图像的深度神经网络训练方法、装置制造方法及图纸

技术编号:26343606 阅读:30 留言:0更新日期:2020-11-13 20:47
本申请涉及一种针对病理全场图像的深度神经网络训练方法、装置。所述方法包括:对多个具有全片级标注的病理全场图像分别进行裁切,获得由多个小图片的特征数据构成第一样本集;将所述第一样本集输入初始神经网络模型,得到所述第一样本集中每个所述小图片的输出概率向量;在所述病理全场图像中最大的所述输出概率向量大于预设值时,根据最大的所述输出概率向量对应的所述小图片构建弱监督数据集;将所述弱监督数据集和所述像素级别标注的病理图像样本集混合获得混合训练集,并根据所述混合训练集对所述初始神经网络模型进行训练,获得用于对病理全场图像分类的最终神经网络模型。采用本案可解决病理全场图像的分类模型像素级标注样本少的问题。

A deep neural network training method and device for pathological full field images

【技术实现步骤摘要】
一种针对病理全场图像的深度神经网络训练方法、装置
本申请涉及图像处理
,特别是涉及一种针对病理全场图像的深度神经网络训练方法、装置。
技术介绍
随着近些年的技术发展,基于机器学习的病理全场图像辅助诊断分析已经变得越来越重要。人工诊断病理全场图像是一个十分繁琐和耗时的过程,一张病理全场图像通常包含数十万个细胞,病理医生在诊断过程中需要从这些细胞中寻找病变细胞才能对该病例做出最终诊断,这一过程不仅耗时而且容易造成漏检。在我国病理医生的缺口达数十万,人工智能辅助诊断不仅可以节省病理医生的时间、提升医生们的工作效率,而且可以降低人工诊断过程中漏检以及主观性带来的负面影响。病理全场图像是一种超大格式的图像文件,往往包含数以十亿计的像素。受限于现有的硬件水平限制,这样的大图像是无法输入到神经网络中做端到端预测的,目前较为主流的做法是将病理全场图像切裁成若干相同大小的小图片,然后再根据这些局部ROI(regionofinterest,感兴趣区域)的特征进行融合,最终做出对全片的诊断。这种做法需要医生进行两阶段的标注:首先,医生需要对裁切的小图片本文档来自技高网...

【技术保护点】
1.一种针对病理全场图像的深度神经网络训练方法,其特征在于,所述方法包括:/n对多个具有全片级标注的病理全场图像分别进行裁切,获得多个大小相同的小图片,所述小图片的特征数据构成第一样本集;/n将所述第一样本集输入初始神经网络模型,并将所述初始神经网络模型的输出通过Softmax函数计算,得到所述第一样本集中每个所述小图片的输出概率向量;其中,所述初始神经网络模型通过像素级别标注的病理图像样本集训练得到;/n在所述病理全场图像中最大的所述输出概率向量大于预设值时,根据最大的所述输出概率向量对应的所述小图片构建弱监督数据集;/n将所述弱监督数据集和所述像素级别标注的病理图像样本集混合获得混合训练集...

【技术特征摘要】
1.一种针对病理全场图像的深度神经网络训练方法,其特征在于,所述方法包括:
对多个具有全片级标注的病理全场图像分别进行裁切,获得多个大小相同的小图片,所述小图片的特征数据构成第一样本集;
将所述第一样本集输入初始神经网络模型,并将所述初始神经网络模型的输出通过Softmax函数计算,得到所述第一样本集中每个所述小图片的输出概率向量;其中,所述初始神经网络模型通过像素级别标注的病理图像样本集训练得到;
在所述病理全场图像中最大的所述输出概率向量大于预设值时,根据最大的所述输出概率向量对应的所述小图片构建弱监督数据集;
将所述弱监督数据集和所述像素级别标注的病理图像样本集混合获得混合训练集,并根据所述混合训练集对所述初始神经网络模型进行训练,获得用于对病理全场图像上ROI进行分类的最终神经网络模型。


2.根据权利要求1所述的方法,其特征在于,在对多个具有全片级标注的病理全场图像分别进行裁切,获得多个大小相同的小图片,所述小图片的特征数据构成第一样本集之前,包括:
将像素级别标注的病理图像样本集分为训练样本集和验证样本集;
将所述训练样本集输入原始神经网络模型进行训练,获得训练神经网络模型;
在验证样本集输入所述训练神经网络模型中,计算得到的损失值不再变化时,将所述训练神经网络模型确定为初始神经网络模型。


3.根据权利要求1所述的方法,其特征在于,所述将所述第一样本集输入初始神经网络模型,并将所述初始神经网络模型的输出通过Softmax函数计算,得到所述第一样本集中每个所述小图片的输出概率向量,包括:
将所述第一样本集输入初始神经网络模型预存分类,获得模型输出结果;
将所述模型输出结果经过Softmax函数计算,得到所述第一样本集中每个所述小图片的输出概率向量。


4.根据权利要求1所述的方法,其特征在于,还包括:根据预设样本集的每个所述小图片的输出概率向量计算梯度模长和梯度密度,并根据所述梯度模长和梯度密度计算损失函数;
所述将所述弱监督数据集和所述像素级别标注的病理图像样本集混合获得混合训练集,并根据所述混合训练集对所述初始神经网络模型进行训练,获得用于对病理全场图像上ROI进行分类的最终神经网络模型,包括:
将所述弱监督数据集和所述像素级别标注的病理图像样本集混合获得混合训练集,并根据所述混合训练集和所述损失函数对所述初始神经网络模型进行训练,获得用于对病理全场图像上ROI进行分类的最终神经网络模型。


5.根据权利要求1所述的方法,其特征在于,所述根据预设样本集的每个所述小图片的输出概率向量计算梯度模长和梯度密度,并根据所述梯度模长和梯度密度计算损失函数,包括:
根据所述第一样本集的每个所述小图片的输出概率向量计算多分类任务的交叉熵损失函数;
对所述交叉熵损失函数进行求导,计算得到所述小图片的梯度模长;
计算所述第一样本集的每个所述小图片的梯度模长的统计分布;
将所述梯度模长的取值均分为多个区域,并统计每个区域内的样本个数;
计算所述样本个数与所述区间的长度之比,得到所述小图片的梯度密度;
计算所述梯度密度的倒数和所述第一样本集的样本个数之积,得到所述小...

【专利技术属性】
技术研发人员:崔灿惠文丽杜家文杨林
申请(专利权)人:杭州迪英加科技有限公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1