【技术实现步骤摘要】
一种基于深度时空神经网络的需求预测方法、系统及计算机可读存储介质
本专利技术涉及信息预测领域,更具体地,涉及一种基于深度时空神经网络的需求预测方法、系统及计算机可读存储介质。
技术介绍
制造业供应风险的影响因素识别及供应风险的管理和控制成为了提升制造效率的关键。其中,制造供应链需求信息的预测是研究中的一个关键点,因为准确的预测能够有效避免牛鞭效应。显然,供应链的递归效应决定了应当先预测下游的需求信息,然后根据需求产生相应订单,最后根据订单信息才能制定生产决策,并为库存管理提供依据.所以精准的需求预测可以控制库存成本,缩减供应提前期,同时降低断货、缺货的风险。现有的预测方法主要包括定性法、因果关系法、仿真法和时间序列法。定性方法主要依赖于人的主观判断,适用于只能获得很少的历史数据或专家的意见十分重要的场合,适用场景有限。主要有集体讨论法、类比法、市场研究法、德尔菲法。因果关系法假定需求预测与某些外界因素(如经济状况、利率)等高度相关,找到这些外界因素与需求之间的关联性,通过预测外界因素的变化来预 ...
【技术保护点】
1.一种基于深度时空神经网络的需求预测方法,其特征在于,包括以下步骤:/n采集历史订单的需求序列数据,对采集历史订单的需求序列数据进行预处理,得到预处理后的历史订单的需求序列数据;/n基于预处理后的历史订单的需求序列数据构建数据集,所述的数据集包括输入需求序列数据和预测结果序列数据;并数据集划分为训练数据子集和测试数据子集;所述的输入需求序列数据包括预处理后的历史订单的需求序列数据;/n搭建基于注意力机制和因果扩展卷积的神经网络的需求序列预测模型;/n利用数据集对需求序列预测模型进行训练,得到训练后的需求序列预测模型;/n通过预处理后的历史订单的需求序列数据,结合训练后的需 ...
【技术特征摘要】
1.一种基于深度时空神经网络的需求预测方法,其特征在于,包括以下步骤:
采集历史订单的需求序列数据,对采集历史订单的需求序列数据进行预处理,得到预处理后的历史订单的需求序列数据;
基于预处理后的历史订单的需求序列数据构建数据集,所述的数据集包括输入需求序列数据和预测结果序列数据;并数据集划分为训练数据子集和测试数据子集;所述的输入需求序列数据包括预处理后的历史订单的需求序列数据;
搭建基于注意力机制和因果扩展卷积的神经网络的需求序列预测模型;
利用数据集对需求序列预测模型进行训练,得到训练后的需求序列预测模型;
通过预处理后的历史订单的需求序列数据,结合训练后的需求序列预测模型,得到未来的需求预测结果。
2.根据权利要求1所述的需求预测方法,其特征在于,所述的预处理包括以下子步骤:
对采集历史订单的需求序列数据中存在缺失信息的需求序列数据和存在错误的需求序列数据进行删除;
若时间节点缺乏对应的需求序列数据,则以上述时间节点周围的时间节点的同类需求的平均值进行填充到上述时间节点中。
3.根据权利要求1所述的需求预测方法,其特征在于,所述的数据集包括以下内容:
预处理后的历史订单的需求序列数据采用滑动窗口方法,通过选择一个需求序列数据为一个周期进行滑窗,从而构建多个训练窗口,扩大训练集数量;最后的a个需求序列数据作为预测结果序列数据,剩余的需求序列数据作为输入需求序列数据;所述的a是预设值;
将数据集中x的需求序列数据作为训练数据子集,将数据集中y的需求序列数据作为测试数据子集,所述的p+q=1。
4.根据权利要求1至3中任一权利要求所述的需求预测方法,其特征在于,所述的“搭建基于注意力机制和因果扩展卷积的神经网络的需求序列预测模型”中的需求序列预测模型包括以下内容:
需求序列预测模型的时空层包括β个inception模块,每个inception模块包含γ个分支,每个分支都包含因果卷积和扩展卷积。
5.根据权利要求4所述的需求预测方法,其特征在于,所述的“利用数据集对需求序列预测模型进行训练”包括以下内容:
inception模块的隐藏单元的输出值通过下式进行表达:
y=w·x+b
式中,所述的y表示输出值,所述的x表示输入值,所述的w表示权重值的矩阵,所述的b表示偏置值向量;
对输入数据进行训练时,通过损失函数评估需求序列预测模型的目标输出和实际输出的差距的函数,所述的函数值越小说明实际输出与目标输出的差值越小,表示权重值越合适;
通过Adam算法对损失函数进行优化,定义初始学习率δ,对损失函数进行迭代更新。
6.根...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。