外延GeSi量子点的方法技术

技术编号:26069877 阅读:45 留言:0更新日期:2020-10-28 16:43
本发明专利技术提供一种外延GeSi量子点的方法,包括如下步骤:步骤1)在硅衬底上采用光刻结合湿法腐蚀技术制备截顶倒置金字塔图形,得到图形衬底;所述截顶倒置金字塔的四个侧面的晶面为(111)面;步骤2)去除所述图形衬底上湿法腐蚀的掩膜并清洗所述图形衬底;步骤3)将所述图形衬底置于外延生长装置中,在所述截顶倒置金字塔图形衬底上直接异质外延GeSi量子点;步骤4)在所述GeSi量子点上外延硅盖层。本发明专利技术提供的方法同时规避了干法刻蚀会损伤衬底表面以及湿法腐蚀制备图形衬底的特征尺寸过大导致生长的量子点特征尺寸过大的缺点。采用本发明专利技术提供的方法所生长的量子点大小一致,同时量子点的位置高度对称,实现了量子点生长的四倍频。

【技术实现步骤摘要】
外延GeSi量子点的方法
本专利技术属于半导体
具体地,本专利技术涉及外延GeSi量子点的方法。
技术介绍
硅作为目前最主要的半导体材料,在微电子器件材料领域占有主流地位。随着集成电路集成度不断提高,电子器件尺寸的不断缩小,RC延迟问题越发严重,这一效应严重制约着电子传输信息的能力。为了突破这一瓶颈,需要寻找一种新的信息载体,光子是首选的对象。得益于微纳加工技术的发展,硅基光子学近十多年来实现的井喷式的发展,目前硅基光电器件已覆盖了光发射、光调制、光传输、光探测等领域,其中光调制、光传输、光探测器件均实现了直接用硅材料制作,且制作工艺与集成电路工艺兼容,可以在一个硅片上兼容电子器件和光子器件,进一步衍生出硅基光电子学的领域。然而硅基光发射仍是制约硅基光电子学的重要因素,原因在于硅是间接带隙材料,载流子的复合发光只能通过声子辅助才能发生,是一个二级过程,发光几率较低,无法形成有效的硅基光源,特别是硅基电致激光器。目前使用的光源都是硅片上键合III-V族激光器,其与集成电路工艺的不兼容性,制约了这一体系的应用。GeSi量子点、纳米线等低维材料的发光是有望实现硅基电致发光的一种重要途径。在量子结构中的量子限制效应可以有效展宽电子和空穴的波函数,从而增加电子和空穴波函数的交叠,显著增加电子和空穴的复合发光几率,为实现硅基光源提新的解决途径。目前,制备量子点的方法主要分为两类:一类是自组装生长,即先进行二维生长,形成异质薄膜,然后二维异质薄膜在应力的作用下转变为三维生长的量子点。这种方法的优点是能制备出高密度、无缺陷的量子点,但是量子点生长无序,尺寸大小不均匀,会导致发光峰的非均匀展宽,进而降低波峰增益影响器件性能。二类是在图形衬底生长量子点,即先在衬底表面做图形,然后利用不同晶面上外延生长的差异,在凹槽和凸脊上得到量子点。这种方法的优点是所获得的量子点的尺寸和位置分布均匀,而且可以根据设计实现人为控制。但是在图形衬底上生长量子点也存在一定问题。干法刻蚀可以制备特征尺寸在几十纳米的图形,用来生长几十纳米的量子点,然而,干法刻蚀过程中难免会在生长表面引入损伤和污染;湿法腐蚀也可以制备图形衬底,同时相对于干法刻蚀,可以降低表面损伤,但是由于湿法腐蚀不可避免会出现横向钻蚀,造成图形衬底尺寸扩大难以制备特征尺寸小于100纳米的图形,进而用此图形衬底生长的量子点尺寸过大,量子效应不明显。
技术实现思路
本专利技术的目的是提供一种在大特征尺寸图形上外延均匀且具有对称性小尺寸量子点的方法,即用湿法腐蚀制备几百纳米量级尺寸的截顶倒置金字塔图形,在其上生长几十纳米尺寸的量子点。本专利技术的目的是通过以下技术方案实现的。本专利技术提供一种外延GeSi量子点的方法,包括如下步骤:步骤1)在硅衬底上采用光刻结合湿法腐蚀技术制备截顶倒置金字塔图形,得到图形衬底;步骤2)去除所述图形衬底上湿法腐蚀的掩膜并清洗所述图形衬底;步骤3)将所述图形衬底置于外延生长装置中,在所述截顶倒置金字塔图形衬底上直接异质外延GeSi量子点;步骤4)在所述GeSi量子点上外延硅盖层。优选地,在本专利技术所述的方法中,所述截顶倒置金字塔图形的四个侧面的晶面为(111)面。优选地,在本专利技术所述的方法中,所述GeSi量子点位于所述(111)面的交界线上。优选地,在本专利技术所述的方法中,所述截顶倒置金字塔的顶部开口的边长为150nm-400nm,底部边长为80nm-200nm,所述截顶倒置金字塔图形的排列周期为450nm-700nm。优选地,在本专利技术所述的方法中,所述硅衬底的晶向为(001)。优选地,在本专利技术所述的方法中,所述GeSi量子点的横向尺寸为30nm-80nm。优选地,在本专利技术所述的方法中,所述步骤1中的湿法腐蚀是在以下条件下进行的:湿法腐蚀的速率为10nm/min-80nm/min,湿法腐蚀采用的溶液是KOH溶液。优选地,在本专利技术所述的方法中,所述步骤3中的外延GeSi量子点是通过选自固态源MBE、气态源MBE或超高真空CVD的方式进行的。优选地,在本专利技术所述的方法中,所述步骤3中的外延GeSi量子点是在以下条件下进行的:生长温度为600℃-750℃,生长速率为1nm/s-0.02nm/s。优选地,在本专利技术所述的方法中,所述步骤2中的去除所述图形衬底上湿法腐蚀的掩膜是采用等离子体来去除的。优选地,在本专利技术所述的方法中,所述步骤2中的清洗是采用RCA法进行。本专利技术具有如下有益效果:1.本专利技术提供了一种在大特征尺寸图形上外延均匀且具有对称性小尺寸量子点的方法,即用湿法腐蚀制备几百纳米量级的截顶倒金字塔图形,在其上生长几十纳米的量子点。这一方法同时规避了干法刻蚀会损伤衬底表面以及湿法腐蚀制备图形衬底的特征尺寸过大导致生长的量子点特征尺寸过大的缺点。2.采用本专利技术提供的方法所生长的量子点大小一致,分布均匀,且量子点分布于衬底(111)面的交界线上,量子点横向尺寸为30nm-80nm,同时量子点的位置具有高度对称性,实现了量子点生长的四倍频。3.本专利技术在图形衬底上外延量子点前,无需生长缓冲层以弥补在图形衬底加工过程中的损伤。4.本专利技术的方法简单实用,成本低廉,同时兼顾科研和生产的需求,为解决硅基发光器件打下基础。附图说明以下,结合附图来详细说明本专利技术的实施方案,其中:图1是本专利技术实施例1制备的截顶倒置金字塔图形示意图;图2是本专利技术实施例1制备的量子点生长位置示意图;图3是本专利技术实施例1制备的截顶倒置金字塔图形的制作流程图;图4是本专利技术实施例1制备的截顶倒置金字塔的SEM图;图5是本专利技术实施例1制备的外延GeSi量子点的SEM图;图6是本专利技术实施例2制备的外延GeSi量子点的SEM图;图7是本专利技术实施例3制备的外延GeSi量子点的SEM图。具体实施方式下面结合具体实施方式对本专利技术进行进一步的详细描述,给出的实施例仅为了阐明本专利技术,而不是为了限制本专利技术的范围。实施例1步骤1)在硅图形衬底上制作截顶倒置金字塔图形。具体参照图3所示的制备截顶倒置金字塔图形的制作流程图。首先,选取晶向为(001)的N型单晶硅片作为衬底,其表面天然存在6nm到10nm二氧化硅氧化层,在其上旋涂光刻胶。然后,用干涉曝光系统制备周期为600nm,大小为240nm的二维光刻胶点阵。随后,通过RIE干法刻蚀二氧化硅层,刻蚀气体为CHF3与Ar气,将光刻胶图形转移到二氧化硅层,同时形成氟碳聚合物掩膜,用于后续湿法腐蚀,湿法腐蚀采用KOH腐蚀溶液,腐蚀速率为20nm/min,并以氟碳聚合物为湿法腐蚀掩膜,制备出二维截顶倒金字塔图形。图形衬底形貌如图2所示,周期为600nm,图形顶部开口的边长为280nm,底部边长为160nm的截顶倒置金字塔图形,所述截顶倒置金字塔的四个侧面为(111)面。步骤2)去除图形衬底上的掩膜以及本文档来自技高网
...

【技术保护点】
1.一种外延GeSi量子点的方法,包括如下步骤:/n步骤1)在硅衬底上采用光刻结合湿法腐蚀技术制备截顶倒置金字塔图形,得到图形衬底;/n步骤2)去除所述图形衬底上湿法腐蚀的掩膜并清洗所述图形衬底;/n步骤3)将所述图形衬底置于外延生长装置中,在所述截顶倒置金字塔图形衬底上直接异质外延GeSi量子点;/n步骤4)在所述GeSi量子点上外延硅盖层。/n

【技术特征摘要】
1.一种外延GeSi量子点的方法,包括如下步骤:
步骤1)在硅衬底上采用光刻结合湿法腐蚀技术制备截顶倒置金字塔图形,得到图形衬底;
步骤2)去除所述图形衬底上湿法腐蚀的掩膜并清洗所述图形衬底;
步骤3)将所述图形衬底置于外延生长装置中,在所述截顶倒置金字塔图形衬底上直接异质外延GeSi量子点;
步骤4)在所述GeSi量子点上外延硅盖层。


2.根据权利要求1所述的方法,其中,所述截顶倒置金字塔图形的四个侧面的晶面为(111)面;
优选地,所述GeSi量子点位于所述(111)面的交界线上。


3.根据权利要求1所述的方法,其中,所述截顶倒置金字塔的顶部开口的边长为250nm-400nm,底部边长为80nm-240nm,所述截顶倒置金字塔图形的排列周期为450nm-700nm。


4.根据权利要求1所述的方法,其中,所述硅衬底的晶向为(001)。

<...

【专利技术属性】
技术研发人员:陈弘徐然邓震贾海强王文新王森李欣欣
申请(专利权)人:中国科学院物理研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1