基于对抗融合多源迁移学习的图像分类方法技术

技术编号:25837246 阅读:47 留言:0更新日期:2020-10-02 14:17
本发明专利技术公开了一种基于对抗融合多源迁移学习的图像分类方法,主要解决现有技术图像分类准确率低的问题。其实现方案是:1)建立特征提取网络,从原始图像文件中提取图像特征;2)将图像特征输入特定的域判别器及分类器,计算得到域判别损失及目标域数据的伪标记、源域数据的分类损失;3)利用目标域样本伪标记与源域样本标记,计算得到源域与目标域中所有类别的MMD距离之和;4)利用域判别损失、分类损失及MMD距离之和对特征提取网络、域判别器及分类器进行训练;5)将待测样本依次输入到训练后的特征提取网络、域判别器及分类器,输出待测样本的类别标记。本发明专利技术能有效提高各类图像的分类准确率,可用于训练数据标记缺失下的图像分类。

【技术实现步骤摘要】
基于对抗融合多源迁移学习的图像分类方法
本专利技术属于图像识别领域,特别涉及一种图像分类方法,可用于训练数据标记缺失下的图像分类。
技术介绍
迁移学习是把在一个领域中学习到的知识、经验“迁移”到另外一个不同但相关的领域,以提高模型的学习效率,而不用重新开始学。一般把待分类或待预测的领域称为“目标域”;把有大量标记数据的辅助域称为“源域”,二者是存在域差异的。利用迁移学习研究图像分类问题在国内外已取得了显著的成效。现有的迁移学习方法可分为基于样本、基于特征和基于模型的方法。受到博弈论中二人零和博弈的启发,有学者提出生成式对抗网络GAN,其包含一对互相对抗的模块,分别是生成式模型和判别式模型,可简称为生成器和判别器。生成器可以生成数据,其原始输入是随机噪声数据,目的是尽可能逼近真实数据;判别器的目的是尽可能的区分出生成数据和真实数据。受GAN中对抗思想的启发,有研究人员提出基于对抗思想进行迁移学习。在基于对抗思想的迁移学习方法中,生成器与GAN中生成样本这一目标不同,其不再真正生成数据,而是对原始数据进行特征提取,使得判别器无法对两本文档来自技高网...

【技术保护点】
1.一种基于对抗融合多源迁移学习的图像分类方法,其特征在于,包括如下:/n(1)建立由域共享子网络F与域特定子网络F

【技术特征摘要】
1.一种基于对抗融合多源迁移学习的图像分类方法,其特征在于,包括如下:
(1)建立由域共享子网络F与域特定子网络Fj构成的特征提取网络;
(2)使用特征提取网络从原始图像文件中提取图像特征:
2a)对于来自源域j的第i个训练样本经过域共享子网络F,得到初步特征其中θF表示F的网络参数,j=1...N,N表示源域个数,表示源域j中样本的数目;
对于来自目标域的第t个样本经过域共享子网络F,得到初步特征其中t=1...nT,nT表示目标域中样本的数目;
2b)将2a)中得到的初步特征输入到第j个源域特有的域特定子网络Fj中,得到原始图像的最终特征Fj(F(xq;θF);θFj),其中θFj表示Fj的网络参数,xq表示输入域特定子网络的第q个样本,
(3)将(2)中得到的最终特征输入到域判别器Dj中,得到输出Dj(Fj(F(xi;θF);θFj);θDj),利用该输出计算得到Dj的域判别损失其中θDj表示Dj的网络参数;
(4)将(2)中得到的最终特征输入到分类器Cj中,得到不同的输出:
对于来自源域j的图像,只有源域分类器Cj被激活,输出利用其输出计算得到Cj的分类损失其中θCj表示Cj的网络参数;
对于来自目标域的图像,所有的分类器都被激活,输出N个P维预测向量,取每个P维向量中最大元素对应的类别标记,即可得到N个伪标记,其中,P表示目标域数据的类别总数;
(5)利用目标域样本的伪标记与源域j中的样本标记,计算源域j与目标域中同类别数据的最大均值差异MMD距离,并对所有类别的MMD距离求和得到
(6)根据域判别损失分类损失及所有类别的MMD距离之和对特征提取网络、域判别器及分类器进行训练,得到训练后的特征提取网络、域判别器及分类器;
(7)将待测样本输入到训练后的特征提取网络、域判别器及分类器中,通过特征提取网络从待测样本中提取图像特征,并将该特征作为域判别器及分类器的输入进行域判别及分类,最终得到该待测样本的N个P维预测向量;
(8)计算每个P维预测向量的熵,并利用该熵值计算得到目标域样本的最终类别标记。


2.根据权利要求1所述的方法,其特征在于:(1)中的域共享子网络F是由卷积层后接4个残差块构成的残差神经网络。


3.根据权利要求1所述的方法,其特征在于:(1)中的域特定子网络共有N个,每个子网络是由卷积层、批标准化层及relu激活函数构成的多层神经网络。


4.根据权利要求1所述的方法,其特征在于:(3)中域判别器共有N个,每个域判别器均由全连接层构成。


5.根据权利要求1所述的方法,其特...

【专利技术属性】
技术研发人员:方敏徐筱杜辉胡心钰李海翔郭龙飞
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1