一种电驱动总成机械系统可靠性试验载荷谱的编制方法技术方案

技术编号:25397864 阅读:43 留言:0更新日期:2020-08-25 23:02
本发明专利技术提供了一种电驱动总成机械系统可靠性试验载荷谱的编制方法,包括以下步骤:步骤1,采集用户载荷数据,进行预处理后划分道路工况片段;步骤2,确定出五种典型工况;步骤3,选取各个典型工况的可靠性试验循环片段;步骤4,采用蒙特卡洛仿真外推出全寿命周期下各零部件的损伤目标;步骤5,利用多目标优化方法计算出涵盖多损伤目标下各个可靠性试验循环片段的循环次数;步骤6,各个可靠性试验循环片段拼接得到可靠性试验循环工况;步骤7,由可靠性试验循环片段的的循环次数和可靠性试验循环工况编制得到可靠性试验载荷谱。本发明专利技术编制的载荷谱既关联用户载荷数据,又涵盖较高的损伤强度,为电驱动总成可靠性设计与验证提供参考和依据。

【技术实现步骤摘要】
一种电驱动总成机械系统可靠性试验载荷谱的编制方法
本专利技术属于电动汽车的可靠性分析
,具体涉及一种电驱动总成机械系统可靠性试验载荷谱的编制方法。
技术介绍
电驱动总成作为汽车电动化的核心部件,是纯电动、氢燃料电池等多种新能源汽车的唯一动力系统,为车辆前进提供动力并回收部分制动能量。相对传统汽车,电动汽车动力性大幅提升,其转速与扭矩等载荷强度的增加相应加剧了电驱动总成失效的风险。在汽车开发体系中,零件/总成/整车等多层级的可靠性试验是验证并确保产品可靠性与耐久性的主要方式。目前面向传统内燃机车辆的可靠性试验规范难以有效覆盖电驱动总成机械系统实际服役载荷强度。因此,构建反映用户真实使用条件的电驱动总成机械系统可靠性试验载荷谱,能有效验证电驱动总成可靠性水平并支持其高质量开发。
技术实现思路
本专利技术是为了解决上述问题而进行的,目的在于提供一种电驱动总成机械系统可靠性试验载荷谱的编制方法。本专利技术提供了一种电驱动总成机械系统可靠性试验载荷谱的编制方法,具有这样的特征,包括以下步骤:步骤1,基于实际用户道路采集得到用户载荷数据,对用户载荷数据进行预处理并划分道路工况片段为运行段与怠速段;步骤2,关联电驱动总成机械系统失效主导载荷构造运行段的多维度特征参数,对多维度特征参数降维后采用机器学习算法确定出五种典型工况;步骤3,对电驱动总成机械系统的主导载荷进行多维度特征分析,并基于损伤强度分布的连续性及拐点特征选取各个典型工况的最优代表片段作为可靠性试验片段;步骤4,通过用户载荷数据拟合用户年行驶里程分布模型,基于年行驶里程等效各零部件年损伤分布模型,采用蒙特卡洛仿真外推出全寿命周期下各零部件的损伤目标;步骤5,根据全寿命周期下各零部件的损伤目标以及五种可靠性试验片段下对各零部件造成的损伤,利用多目标优化方法计算出涵盖多损伤目标下各个可靠性试验片段的循环次数;步骤6,基于马尔科夫过程下的状态转移概率,采用伪随机数的方法确定用户运行条件下各个可靠性试验片段的拼接顺序,并拼接得到可靠性试验循环工况;步骤7,由可靠性试验片段的的循环次数和可靠性试验循环工况编制得到可靠性试验载荷谱。在本专利技术提供的电驱动总成机械系统可靠性试验载荷谱的编制方法中,还可以具有这样的特征:其中,步骤1中,用户载荷数据涵盖大量不同地域、车型的电动汽车行驶数据,对用户载荷数据进行预处理为剔除异常或无效载荷数据后生成新的载荷历程,运行段为汽车车速从零开始到下一个速度为零的片段,怠速段为车辆启动到车速为零的片段。在本专利技术提供的电驱动总成机械系统可靠性试验载荷谱的编制方法中,还可以具有这样的特征:其中,步骤2中确定五种典型工况时,包括以下子步骤:步骤2-1,以原始扭矩、转速、电流、电压作为基础数据,以每个运行段的速度、加速度、扭矩、扭矩波动、电流、电压、功率、损伤及时间里程作为特征构造多维度特征参数;步骤2-2,采用主成分分析法对多维度特征参数进行降维,提取主成分特征得到主成分得分矩阵;步骤2-3,采用K-Means法对用户运行工况进行识别分类,以主成分得分矩阵为基础数据,以多维空间点与点之间的欧式距离作为分类依据,通过CH指标确定聚类数目,将运行段分为五种典型工况,分别为工况一、工况二、工况三、工况四以及工况五。在本专利技术提供的电驱动总成机械系统可靠性试验载荷谱的编制方法中,还可以具有这样的特征:其中,步骤2-2中,若多维度特征参数降维后为n维,则对多维度特征参数进行线性变换生成的主成分为yn,将90%累计贡献率作为阈值提取主成分特征,主成分特征包含电驱动总成机械系统失效主导载荷的特征信息量,该特征信息量包括扭矩、转速、电流、电压以及功率,步骤2-3中,任意两个n维向量X1=(x11,x12,…,x1n)和X1=(x11,x12,…,x1n)之间的欧式距离为d12,计算公式如下:CH指标的计算公式如下:公式(2)中,p为总聚类个数,k为当前的类,tr(B)为类间离差矩阵的迹,tr(W)为类内离差矩阵的迹,工况一为中高速加减速,对应大扭矩、中高转速低频波动工况,工况二为短时中低速加减速,对应大扭矩、中转速高频波动工况,工况三为长时间中速加减速工况,对应中扭矩、中转速低频波动工况,工况四为高速加减速,中扭矩、高转速低频波动运行工况,工况五为低速加减速,对应中小扭矩、低转速中低频波动工况。在本专利技术提供的电驱动总成机械系统可靠性试验载荷谱的编制方法中,还可以具有这样的特征:其中,步骤3中可靠性试验片段的选取还包括以下子步骤:步骤3-1,对于电驱动总成机械系统中受扭矩作用的零部件,通过雨流循环计数对每个运行段的扭矩时间历程提取载荷循环,对于电驱动总成机械系统中损伤由转速和扭矩联合循环载荷引起的齿轮系零件,通过对每个运行段的转速与扭矩时间历程进行联合分布计数,对于电驱动总成机械系统中的控制器和功率器件,对电流、电压及对应时间进行联合分布计数,并构造功率参数进行循环计数;步骤3-2,采用Miner线性累积损伤准则得出每一个运行段对轴系零件和齿轮系零件的损伤,基于Arrhenius模型计算电子元器件的高温老化损伤,基于广义Eying模型计算电-热耦合损伤,基于Coffin-Manson计算力-热耦合下的损伤,基于Rhee模型计算力-速耦合损伤,得到电驱动总成机械系统的电机、控制器以及减/变速器的主要部件损伤Di,得到各典型工况下各零部件单位损伤强度累积分布;步骤3-3,综合各典型工况下各零部件单位损伤强度累积分布,以分布曲线拐点为准则选取各典型工况的最优代表片段。在本专利技术提供的电驱动总成机械系统可靠性试验载荷谱的编制方法中,还可以具有这样的特征:其中,步骤3-2中,针对Miner线性累积损伤准则得出运行段对轴系零件和齿轮系零件造成的损伤,对于受扭矩作用的零部件,通过雨流循环计数得出第i级扭矩幅值SR,i下对应的频次nR,i,通过载荷寿命曲线得出第i级扭矩幅值下的疲劳寿命Nf,i,第i级扭矩幅值下对应的损伤di=nR,i/Nf,i,则每个运行段载荷历程经雨流循环计数后对受扭矩作用的零部件造成的总损伤Di1=∑di,针对受到转速与扭矩联合作用的齿轮系零件,采用联合分布计数计算出第i级扭矩载荷下旋转圈数ri,除以第i级载荷下的疲劳寿命Ni得出第i级扭矩载荷下对应的损伤,基于Arrhenius模型计算电子元器件的高温老化损伤,通过Arrhenius模型,将温度作为加速应力,得到加速寿命模型如下:L=A·e-E/kT(3)公式(3)中,L是寿命特征,A为常数、频数因子,E为激活能,与材料有关,单位为eV,k为波尔兹曼常数,T为温度应力,单位为开尔文,基于广义Eying模型计算电-热耦合损伤,得到寿命预测模型如下:公式(4)中,tL为零件寿命,E为激活能,T为温度应力,Si为除温度外的应力,如电流、电压,k为波尔兹曼常数,A、B、C、α为常数,基于Coffin-Manson计算力-热耦合下的损伤,采用Coffin-Manson模型分析温度本文档来自技高网...

【技术保护点】
1.一种电驱动总成机械系统可靠性试验载荷谱的编制方法,其特征在于,包括以下步骤:/n步骤1,基于实际用户道路采集得到用户载荷数据,对所述用户载荷数据进行预处理并划分道路工况片段为运行段与怠速段;/n步骤2,关联电驱动总成机械系统失效主导载荷构造所述运行段的多维度特征参数,对所述多维度特征参数降维后采用机器学习算法确定出五种典型工况;/n步骤3,对电驱动总成机械系统的主导载荷进行多维度特征分析,并基于损伤强度分布的连续性及拐点特征选取各个所述典型工况的最优代表片段作为可靠性试验片段;/n步骤4,通过所述用户载荷数据拟合用户年行驶里程分布模型,基于年行驶里程等效各零部件年损伤分布模型,采用蒙特卡洛仿真外推出全寿命周期下各零部件的损伤目标;/n步骤5,根据所述全寿命周期下各零部件的损伤目标以及五种所述可靠性试验片段下对各零部件造成的损伤,利用多目标优化方法计算出涵盖多损伤目标下各个所述可靠性试验片段的循环次数;/n步骤6,基于马尔科夫过程下的状态转移概率,采用伪随机数的方法确定用户运行条件下各个所述可靠性试验片段的拼接顺序,并拼接得到可靠性试验循环工况;/n步骤7,由所述可靠性试验片段的的循环次数和所述可靠性试验循环工况编制得到可靠性试验载荷谱。/n...

【技术特征摘要】
20200403 CN 20201025750091.一种电驱动总成机械系统可靠性试验载荷谱的编制方法,其特征在于,包括以下步骤:
步骤1,基于实际用户道路采集得到用户载荷数据,对所述用户载荷数据进行预处理并划分道路工况片段为运行段与怠速段;
步骤2,关联电驱动总成机械系统失效主导载荷构造所述运行段的多维度特征参数,对所述多维度特征参数降维后采用机器学习算法确定出五种典型工况;
步骤3,对电驱动总成机械系统的主导载荷进行多维度特征分析,并基于损伤强度分布的连续性及拐点特征选取各个所述典型工况的最优代表片段作为可靠性试验片段;
步骤4,通过所述用户载荷数据拟合用户年行驶里程分布模型,基于年行驶里程等效各零部件年损伤分布模型,采用蒙特卡洛仿真外推出全寿命周期下各零部件的损伤目标;
步骤5,根据所述全寿命周期下各零部件的损伤目标以及五种所述可靠性试验片段下对各零部件造成的损伤,利用多目标优化方法计算出涵盖多损伤目标下各个所述可靠性试验片段的循环次数;
步骤6,基于马尔科夫过程下的状态转移概率,采用伪随机数的方法确定用户运行条件下各个所述可靠性试验片段的拼接顺序,并拼接得到可靠性试验循环工况;
步骤7,由所述可靠性试验片段的的循环次数和所述可靠性试验循环工况编制得到可靠性试验载荷谱。


2.根据权利要求1所述的电驱动总成机械系统可靠性试验载荷谱的编制方法,其特征在于:
其中,所述步骤1中,所述用户载荷数据涵盖大量不同地域、车型的电动汽车行驶数据,对所述用户载荷数据进行预处理为剔除异常或无效载荷数据后生成新的载荷历程,
所述运行段为汽车车速从零开始到下一个速度为零的片段,所述怠速段为车辆启动到车速为零的片段。


3.根据权利要求1所述的电驱动总成机械系统可靠性试验载荷谱的编制方法,其特征在于:
其中,所述步骤2中确定五种所述典型工况时,包括以下子步骤:
步骤2-1,以原始扭矩、转速、电流、电压作为基础数据,以每个所述运行段的速度、加速度、扭矩、扭矩波动、电流、电压、功率、损伤及时间里程作为特征构造所述多维度特征参数;
步骤2-2,采用主成分分析法对所述多维度特征参数进行降维,提取主成分特征得到主成分得分矩阵;
步骤2-3,采用K-Means法对用户运行工况进行识别分类,以所述主成分得分矩阵为基础数据,以多维空间点与点之间的欧式距离作为分类依据,通过CH指标确定聚类数目,将所述运行段分为五种所述典型工况,分别为工况一、工况二、工况三、工况四以及工况五。


4.根据权利要求3所述的电驱动总成机械系统可靠性试验载荷谱的编制方法,其特征在于:
其中,所述步骤2-2中,若所述多维度特征参数降维后为n维,则对所述多维度特征参数进行线性变换生成的主成分为yn,将90%累计贡献率作为阈值提取所述主成分特征,所述主成分特征包含所述电驱动总成机械系统失效主导载荷的特征信息量,该特征信息量包括扭矩、转速、电流、电压以及功率,
所述步骤2-3中,任意两个n维向量X1=(x11,x12,…,x1n)和X1=(x11,x12,…,x1n)之间的欧式距离为d12,计算公式如下:



所述CH指标的计算公式如下:



公式(2)中,p为总聚类个数,k为当前的类,tr(B)为类间离差矩阵的迹,tr(W)为类内离差矩阵的迹,
所述工况一为中高速加减速,对应大扭矩、中高转速低频波动工况,所述工况二为短时中低速加减速,对应大扭矩、中转速高频波动工况,所述工况三为长时间中速加减速工况,对应中扭矩、中转速低频波动工况,所述工况四为高速加减速,中扭矩、高转速低频波动运行工况,所述工况五为低速加减速,对应中小扭矩、低转速中低频波动工况。


5.根据权利要求1所述的电驱动总成机械系统可靠性试验载荷谱的编制方法,其特征在于:
其中,所述步骤3中所述可靠性试验片段的选取还包括以下子步骤:
步骤3-1,对于电驱动总成机械系统中受扭矩作用的零部件,通过雨流循环计数对每个所述运行段的扭矩时间历程提取载荷循环,对于电驱动总成机械系统中损伤由转速和扭矩联合循环载荷引起的齿轮系零件,通过对每个所述运行段的转速与扭矩时间历程进行联合分布计数,对于电驱动总成机械系统中的控制器和功率器件,对电流、电压及对应时间进行联合分布计数,并构造功率参数进行循环计数;
步骤3-2,采用Miner线性累积损伤准则得出每一个所述运行段对轴系零件和齿轮系零件的损伤,基于Arrhenius模型计算电子元器件的高温老化损伤,基于广义Eying模型计算电-热耦合损伤,基于Coffin-Manson计算力-热耦合下的损伤,基于Rhee模型计算力-速耦合损伤,得到电驱动总成机械系统的电机、...

【专利技术属性】
技术研发人员:赵礼辉王震邓思城冯金芝郑松林高大威翁硕
申请(专利权)人:上海理工大学
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1