一种神经网络模型的拆分方法及相关产品技术

技术编号:25346947 阅读:38 留言:0更新日期:2020-08-21 17:06
本公开披露一种神经网络模型的拆分方法及相关产品,本方案把一个算子拆分成多个规模更小的子算子,这样可以直接调用单核架构下的计算库,避免了重新实现的额外工作量。

【技术实现步骤摘要】
一种神经网络模型的拆分方法及相关产品
本公开的实施例涉及一种神经网络模型的拆分方法及相关产品。
技术介绍
近年来,深度学习加速器被不断提出,并如同通用处理器一样,正在由单核向多核扩展。这种扩展后的多核结构可以在训练阶段支持数据并行的方式来提高数据吞吐量,加快训练速度。然而,在推理阶段,相比吞吐量深度神经网络对端到端的时延有着更高的要求,这往往决定了加速器在某个场景下的可用性。传统的数据并行方案不能满足推理场景下对加速器小数据、低延迟的要求。
技术实现思路
为了解决上述所述的技术问题,本公开提出一种神经网络模型的拆分方法及相关产品。为实现上述目的,本公开提供一种神经网络模型拆分方法,其中,所述方法包括:根据所述神经网络模型中目标层的算子,确定与所述目标层的算子关联的张量数据的拆分状态集合;其中,所述目标层为所述神经网络模型中的至少一层;根据所述神经网络模型的有向无环图遍历所述拆分状态集合,确定相邻拆分状态集合之间的状态路径及状态路径的权重;其中,所述状态路径表示所述算子的拆分方式;所述拆分状态集合中的每本文档来自技高网...

【技术保护点】
1.一种神经网络模型拆分方法,其特征在于,所述方法包括:/n根据所述神经网络模型中目标层的算子,确定与所述目标层的算子关联的张量数据的拆分状态集合;其中,所述目标层为所述神经网络模型中的至少一层;/n根据所述神经网络模型的有向无环图遍历所述拆分状态集合,确定相邻拆分状态集合之间的状态路径及状态路径的权重;其中,所述状态路径表示所述算子的拆分方式;所述拆分状态集合中的每个状态表示一个子张量数据集合,所述状态的所有子张量数据的并集结果为所述张量数据;/n根据所述状态路径的权重,确定所述目标层的目标拆分路径;/n利用所述目标拆分路径对所述神经网络模型的目标层的算子进行拆分。/n

【技术特征摘要】
1.一种神经网络模型拆分方法,其特征在于,所述方法包括:
根据所述神经网络模型中目标层的算子,确定与所述目标层的算子关联的张量数据的拆分状态集合;其中,所述目标层为所述神经网络模型中的至少一层;
根据所述神经网络模型的有向无环图遍历所述拆分状态集合,确定相邻拆分状态集合之间的状态路径及状态路径的权重;其中,所述状态路径表示所述算子的拆分方式;所述拆分状态集合中的每个状态表示一个子张量数据集合,所述状态的所有子张量数据的并集结果为所述张量数据;
根据所述状态路径的权重,确定所述目标层的目标拆分路径;
利用所述目标拆分路径对所述神经网络模型的目标层的算子进行拆分。


2.如权利要求1所述的方法,其特征在于,确定所述目标层的目标拆分路径的步骤包括:
遍历所述目标层的所有拆分状态集合,对当前拆分状态集合,遍历每一状态,获得所有指向当前状态的状态路径以及所述状态路径的起始状态到所述目标层的输入张量数据的起始状态的拆分路径;
根据所述状态路径的权重和所述拆分路径的权重确定所述当前状态到所述目标层的输入张量数据的起始状态的拆分路径;其中,所述拆分路径的权重根据所述拆分路径对应的所有状态路径的权重确定;
遍历完所述目标层的所有拆分状态集合后,获得所述目标层的输入张量数据的拆分状态集合与所述目标层的输出张量数据的拆分状态集合之间的目标拆分路径。


3.如权利要求1所述的方法,其特征在于,确定所述目标层的目标拆分路径的步骤包括:
遍历所述目标层的所有拆分状态集合,对当前拆分状态集合,遍历每一状态,获得所有以当前状态为起点的状态路径以及所述状态路径的结束状态到所述目标层的输出张量数据的终止状态的拆分路径;
根据所述状态路径的权重和所述拆分路径的权重确定所述当前状态到所述目标层的输出张量数据的终止状态的拆分路径;其中,所述拆分路径的权重根据所述拆分路径对应的所有状态路径的权重确定;
遍历完所述目标层的所有拆分状态集合后,获得所述目标层的输入张量数据的拆分状态集合与所述目标层的输出张量数据的拆分状态集合之间的目标拆分路径。


4.如权利要求1所述的方法,其特征在于,所述神经网络模型的目标层的算子拆分后获得的子算子数量为2的整数次幂。


5.如权利要求1所述的方法,其特征在于,所述神经网络模型的目标层的算子的输入张量数据的拆分状态集合中的状态根据所述算子的计算逻辑和对应输出张量数据的拆分状态集合中的状态确定。


6.如权利要求1所述的方法,其特征在于,所述神经网络模型的目标层的算子的输出张量数据的拆分状态集合中的状态根据所述算子的计算逻辑和对应输入张量数据的拆分状态集合中的状态确定。


7.如权利要求1所述的方法,其特征在于,还包括:
在正向遍历阶段,当所述算子的输出张量数据被至少两个算子作为输入张量数据,或者所述算子具有至少两个输出张量数据时,所述算子的输出张量数据的拆分状态集合中保留一个拆分状态,且所述拆分状态经由所述算子的同一状态路径确定。


8.如权利要求1所述的方法,其特征在于,还包括:
在反向遍历阶段,当所述算子具有至少两个输入张量数据时,所述算子的输入张量数据的拆分状态集合中保留一个拆分状态,且所述拆分状态经由所述算子的同一状态路径确定。


9.如权利要求1所述的方法,其特征在于,所述状态路径的权重根据算子的类型和规模、多核处理器硬件参数确定。<...

【专利技术属性】
技术研发人员:不公告发明人
申请(专利权)人:上海寒武纪信息科技有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1