一种微纳颗粒沉积装置制造方法及图纸

技术编号:24556956 阅读:34 留言:0更新日期:2020-06-17 22:23
本实用新型专利技术涉及新材料研发领域,一种微纳颗粒沉积装置,包括注射泵、输液管、盖玻片、保护层、微流体层、悬浮液桥、衬底、位移台和显微镜,微流体层包括微孔径、微通道组、主通道和进液口,采用微流体结构并基于毛细管作用,装置通过在微孔径与可移动衬底之间形成包含待沉积微粒的悬浮液桥来进行微粒自组装,并采用特殊设计的微流体结构来供给悬浮液,在组装过程中能够连续补充悬浮液并调节其悬浮微粒的组成成分,装置在微粒自组装过程中能够调节其悬浮微粒的组成成分并连续补充悬浮液,操作简便,成本低廉。

A micro nano particle deposition device

【技术实现步骤摘要】
一种微纳颗粒沉积装置
本技术涉及新材料研发领域,尤其是一种采用微流体结构并基于毛细管作用的一种微纳颗粒沉积装置。
技术介绍
基于毛细管作用的颗粒组装是一种进行的自下而上(bottom-up)微粒自组装过程的技术,其采用一个表面具有有序微结构的衬底以及一个位于衬底上方的盖玻片,并将一个包含待沉积微粒的悬浮液的液滴限位于衬底与盖玻片之间,然后使得盖玻片相对于衬底缓慢移动,在接近衬底表面的位置形成一个弧面区域,随着悬浮液中水分的蒸发,所述弧面区域中的待沉积微粒浓度增加,其中一部分沉积微粒沉积到衬底上并有序地组装。现有技术缺陷:现有技术中悬浮液的液滴体积受到限制,并且在组装过程中无法重新补充悬浮液,也无法改变液滴的组成成分,所述一种微纳颗粒沉积装置能够解决问题。
技术实现思路
为了解决上述问题,本技术装置通过在微孔径与可移动衬底之间形成包含待沉积微粒的悬浮液桥来进行微粒自组装,并采用特殊设计的微流体结构来供给悬浮液,在组装过程中能够连续补充悬浮液并调节其悬浮微粒的组成成分。本技术所采用的技术方案是:所述一种微纳颗粒沉积装置包括注射泵、输液管、盖玻片、保护层、微流体层、悬浮液桥、衬底、位移台和显微镜,微流体层包括微孔径、微通道组、主通道和进液口,xyz为三维坐标系,衬底位于位移台上,位移台透光且能够三维移动;微流体层上面覆盖有硅氧烷材料制成的厚度为2毫米的保护层,保护层的上面通过环氧树脂固定有盖玻片,显微镜位于位移台下方的15厘米处,用于监测微孔径与衬底之间的悬浮液;衬底表面具有微纳阵列;微流体层由SU-8树脂材料片通过微加工技术制成,进液口、主通道、微通道组和微孔径依次连通,进液口通过输液管连接至注射泵,注射泵将包含待沉积微粒的悬浮液依次通过输液管、进液口、主通道和微通道组,传输至微孔径,微孔径贯通微流体层的上表面和下表面,微通道组由三根截面均为长方形的微流体槽组成,主通道是一根截面为长方形的微流体凹槽;衬底位于微孔径下方0.4毫米时,悬浮液能够从微孔径滴下并在微流体层与衬底之间形成悬浮液桥;微流体层的长度为20毫米、宽度为15毫米、厚度为1毫米,微孔径的长度为7毫米、宽度为0.7毫米,微通道组的微流体槽截面均是高度为80微米、宽度为120微米,主通道的长度为12毫米,主通道的微流体凹槽截面的高度为80微米、宽度为160微米,进液口的直径为900微米;微纳阵列是直接在衬底表面由微纳加工得到的结构,微纳阵列可以是衬底表面沉积的有序的分子结构的富勒烯分子团簇,微纳阵列也可以是衬底表面沉积的有序的分子结构的有机大分子阵列;微流体层具有一个进液口,主通道是直道,微流体层可以具有两个进液口,微流体层也可以具有长S形的主通道。本技术的有益效果是:本技术装置在微粒自组装过程中能够调节其悬浮微粒的组成成分并连续补充悬浮液,操作简便,成本低廉。附图说明下面结合本技术的图形进一步说明:图1是本技术示意图;图2是衬底的放大示意图;图3是微流体层之一的放大示意图;图4是微流体层之二的放大示意图;图5是微流体层之三的放大示意图。图中,1.注射泵,2.输液管,3.盖玻片,4.保护层,5.微流体层,5-1.微孔径,5-2.微通道组,5-3.主通道,5-4.进液口,6.悬浮液桥,7.衬底,7-1.微纳阵列,8.位移台,9.显微镜。具体实施方式如图1是本技术示意图,包括注射泵(1)、输液管(2)、盖玻片(3)、保护层(4)、微流体层(5)、悬浮液桥(6)、衬底(7)、位移台(8)和显微镜(9),微流体层(5)包括微孔径(5-1)、微通道组(5-2)、主通道(5-3)和进液口(5-4),xyz为三维坐标系,衬底(7)位于位移台(8)上,位移台(8)透光且能够三维移动;悬浮液在微流体层(5)与衬底(7)之间形成悬浮液桥(6),微流体层(5)上面覆盖有硅氧烷材料制成的厚度为2毫米的保护层(4),保护层(4)的上面通过环氧树脂固定有盖玻片(3),显微镜(9)位于位移台(8)下方的15厘米处,用于监测微孔径(5-1)与衬底(7)之间的悬浮液。如图2是衬底的放大示意图,衬底(7)表面具有微纳阵列(7-1),微纳阵列(7-1)是直接在衬底(7)表面由微纳加工得到的结构,微纳阵列(7-1)可以是衬底(7)表面沉积的有序的分子结构,如富勒烯分子团簇、有机大分子阵列等。如图3是微流体层之一的放大示意图,微流体层(5)具有一个进液口(5-4),主通道(5-3)是直道,微流体层(5)由SU-8树脂材料片通过微加工技术制成,进液口(5-4)、主通道(5-3)、微通道组(5-2)和微孔径(5-1)依次连通,进液口(5-4)通过输液管(2)连接至注射泵(1),注射泵(1)将包含待沉积微粒的悬浮液依次通过输液管(2)、进液口(5-4)、主通道(5-3)和微通道组(5-2),传输至微孔径(5-1),微孔径(5-1)贯通微流体层(5)的上表面和下表面,微通道组(5-2)由三根截面均为长方形的微流体槽组成,主通道(5-3)是一根截面为长方形的微流体凹槽;衬底(7)位于微孔径(5-1)下方0.4毫米时,悬浮液能够从微孔径(5-1)滴下并在微流体层(5)与衬底(7)之间形成悬浮液桥(6);微流体层(5)的长度为20毫米、宽度为15毫米、厚度为1毫米,微孔径(5-1)的长度为7毫米、宽度为0.7毫米,微通道组(5-2)的微流体槽截面均是高度为80微米、宽度为120微米,主通道(5-3)的长度为12毫米,主通道(5-3)的微流体凹槽截面的高度为80微米、宽度为160微米,进液口(5-4)的直径为900微米。如图4是微流体层之二的放大示意图,微流体层(5)具有两个进液口(5-4),能够采用两个注射泵(1)分别向两个进液口(5-4)注入不同组分的悬浮液。如图5是微流体层之三的放大示意图,微流体层(5)具有长S形的主通道(5-3),能够使得待沉积微粒在悬浮液中分布更均匀。实施例,如图2,微纳阵列(7-1)是直接在衬底(7)表面由微纳加工得到的结构;实施例,微纳阵列(7-1)是衬底(7)表面沉积的有序的分子结构的富勒烯分子团簇;实施例,微纳阵列(7-1)是衬底(7)表面沉积的有序的分子结构的有机大分子阵列;实施例,如图3,微流体层(5)具有一个进液口(5-4),主通道(5-3)是直道;实施例,如图4,微流体层(5)具有两个进液口(5-4),能够采用两个注射泵(1)分别向两个进液口(5-4)注入不同组分的悬浮液;实施例,如图5,微流体层(5)具有长S形的主通道(5-3),能够使得待沉积微粒在悬浮液中分布更均匀。本装置工作原理:通过位移台(8)将衬底(7)移动至微孔径(5-1)下方0.4毫米位置,采用注射泵(1)将包含待沉积微粒的悬浮液依次通过输液管(2)、进液口(5-4)、主通道(5-3)、微通道组(5-2)传输至微孔径(5-1)本文档来自技高网...

【技术保护点】
1.一种微纳颗粒沉积装置,包括注射泵(1)、输液管(2)、盖玻片(3)、保护层(4)、微流体层(5)、悬浮液桥(6)、衬底(7)、位移台(8)和显微镜(9),微流体层(5)包括微孔径(5-1)、微通道组(5-2)、主通道(5-3)和进液口(5-4),xyz为三维坐标系,衬底(7)位于位移台(8)上,位移台(8)透光且能够三维移动,/n其特征是:微流体层(5)上面覆盖有硅氧烷材料制成的厚度为2毫米的保护层(4),保护层(4)的上面通过环氧树脂固定有盖玻片(3),显微镜(9)位于位移台(8)下方的15厘米处,用于监测微孔径(5-1)与衬底(7)之间的悬浮液;衬底(7)表面具有微纳阵列(7-1);微流体层(5)由SU-8树脂材料片通过微加工技术制成,进液口(5-4)、主通道(5-3)、微通道组(5-2)和微孔径(5-1)依次连通,进液口(5-4)通过输液管(2)连接至注射泵(1),注射泵(1)将包含待沉积微粒的悬浮液依次通过输液管(2)、进液口(5-4)、主通道(5-3)和微通道组(5-2),传输至微孔径(5-1),微孔径(5-1)贯通微流体层(5)的上表面和下表面,微通道组(5-2)由三根截面均为长方形的微流体槽组成,主通道(5-3)是一根截面为长方形的微流体凹槽;衬底(7)位于微孔径(5-1)下方0.4毫米时,悬浮液能够从微孔径(5-1)滴下并在微流体层(5)与衬底(7)之间形成悬浮液桥(6)。/n...

【技术特征摘要】
1.一种微纳颗粒沉积装置,包括注射泵(1)、输液管(2)、盖玻片(3)、保护层(4)、微流体层(5)、悬浮液桥(6)、衬底(7)、位移台(8)和显微镜(9),微流体层(5)包括微孔径(5-1)、微通道组(5-2)、主通道(5-3)和进液口(5-4),xyz为三维坐标系,衬底(7)位于位移台(8)上,位移台(8)透光且能够三维移动,
其特征是:微流体层(5)上面覆盖有硅氧烷材料制成的厚度为2毫米的保护层(4),保护层(4)的上面通过环氧树脂固定有盖玻片(3),显微镜(9)位于位移台(8)下方的15厘米处,用于监测微孔径(5-1)与衬底(7)之间的悬浮液;衬底(7)表面具有微纳阵列(7-1);微流体层(5)由SU-8树脂材料片通过微加工技术制成,进液口(5-4)、主通道(5-3)、微通道组(5-2)和微孔径(5-1)依次连通,进液口(5-4)通过输液管(2)连接至注射泵(1),注射泵(1)将包含待沉积微粒的悬浮液依次通过输液管(2)、进液口(5-4)、主通道(5-3)和微通道组(5-2),传输至微孔径(5-1),微孔径(5-1)贯通微流体层(5)的上表面和下表面,微通道组(5-2)由三根截面均为长方形的微流体槽组成,主通道(5-3)是一根截面为长方形...

【专利技术属性】
技术研发人员:张向平范晓雯方晓华
申请(专利权)人:金华职业技术学院
类型:新型
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1