本发明专利技术公开了一种基于参考模型和扰动精确观测补偿的三阶舵机控制方法,所述方法包括如下步骤:步骤一、设计三阶舵机控制器;步骤二、建立三阶舵机模型;步骤三、选择参考模型;步骤四、选择外环控制律;步骤五、建立内环二阶控制模型;步骤六、建立二阶扩张状态观测器并设计状态观测器参数;步骤七、设计非线性滑模律;步骤八、设计信号预处理策略;步骤九、三阶舵机控制。本发明专利技术具有响应快速无超调、对参数变化不敏感、鲁棒性较好、控制精度高、抗干扰性强等优点。
Control method of third-order actuator based on reference model and disturbance precise observation compensation
【技术实现步骤摘要】
基于参考模型和扰动精确观测补偿的三阶舵机控制方法
本专利技术属于舵机控制
,涉及一种舵机控制方法,具体涉及一种基于参考模型和扰动精确观测补偿的三阶弹用电动舵机控制方法。
技术介绍
舵机是导弹重要的控制元件,其控制性能的优劣决定着导弹的控制性能和打击精度。随着军事技术的发展,要求导弹具有更高的打击精度和更优越的控制性能。舵机越来越向高精度、小体积、承载能力强的方向发展,而电动舵机具有成本低、控制系统简单、寿命长等特点,在导弹上得到广泛应用。弹用电动舵机是一个非线性系统,不同飞行环境下工作导致的负载变化较大,具有不确定性和强干扰等特性。实际应用中弹用舵机常采用PID控制器,然而由PID控制器确定的舵机性能受负载及一些非线性因素影响较大,控制过程中会产生超调现象,加之舵机的一些性能指标要求之间相互制约,传统PID控制器难以达到理想的控制效果。为提高导弹在强干扰条件下和不确定环境中的控制精度,并避免超调,从而提高导弹的控制性能,亟需一种能够对扰动进行精确观测并在控制中加以补偿的工程实用舵机控制方法。基于“扰动能够影响被控输出,其作用反映在被控输出信息中”的思想,可借用观测器的设计思想,将控制过程中的模型不确定部分、内部扰动、外界扰动等各类扰动扩张成新的状态变量,实现对扰动的动态精确观测,再将扰动估计结果引入控制器的设计中,实现控制对象的动态补偿线性化,从而实现扰动精确观测与补偿。为避免控制超调现象,可为控制设计一个过渡过程,减少初始控制偏差引起的控制量过大,提高控制系统的稳定性、鲁棒性、适应性。一种可行的方法是在控制中引入参考模型,参考模型能够将控制输入指令转化为跟踪参考模型期望输出,能降低系统超调。此外,舵机模型的选择对控制器的设计也会产生影响。舵机数学模型包括二阶模型和三阶模型,一般舵机控制仿真中常采用二阶舵机模型,二阶模型和三阶模型在低频段和中频段差异较小,在高频段存在较大相位差异。三阶模型相对二阶模型更加精确和接近真实模型,若追求更好的控制品质应采用更为精确的三阶模型进行舵机控制器的设计。
技术实现思路
针对弹用舵机控制,本专利技术提供了一种基于参考模型和扰动精确观测补偿的三阶舵机控制方法。该方法具有响应快速无超调、对参数变化不敏感、鲁棒性较好、控制精度高、抗干扰性强等优点。本专利技术的目的是通过以下技术方案实现的:一种基于参考模型和扰动精确观测补偿的三阶舵机控制方法,包括如下步骤:步骤一、设计三阶舵机控制器:所述三阶舵机控制器采用内外环结构,内环由扩张状态观测器、非线性滑模控制器、三阶舵机模型三部分组成,外环包括参考模型、PD角度控制器;步骤二、建立三阶舵机模型从控制输入u到舵偏角θ的三阶舵机模型:式中:为角速度,为角加速度,则x1=θ,Ke为电机反电势系数,τm、τe分别为舵机机电时间常数与电磁时间常数,i为比例系数,u为控制量;步骤三、选择参考模型选择参考模型形式如下:式中:T表示参考模型时间常数,E表示参考模型阻尼系数,s表示拉氏变换中的复数参变量,θc为期望舵偏角指令,为参考模型输出;步骤四、选择外环控制律外环为角度控制环,控制律采用PD控制律:式中:Kp为比例控制系数,Kd为微分控制系数,θc为期望角度,ω为角速度,有步骤五、建立内环二阶控制模型令角速度跟踪误差为e=θc-θ,那么内环二阶控制模型为:式中:为角加速度误差,为角速度误差的三阶导数,表示期望角速度,表示期望角加速度,表示期望的角速度三阶导数;步骤六、建立二阶扩张状态观测器并设计状态观测器参数针对内环二阶控制模型,建立二阶扩张状态观测器,其具体形式为:式中:Z1观测Z2观测Z3观测β1、β2、β3为扩张状态观测器设计参数,为使状态观测器收敛,β1、β2、β3按照以下原则选取:这样状态观测器设计参数数目就降为一个,即只需设计k1,k1应选择较小值,保证观测器的快速收敛性;状态观测器最终形式如下:步骤七、设计非线性滑模控制律内环控制律采用非线性滑模控制律,依次进行滑模面设计和滑模控制律设计,其中:所采用的滑模面为:S=sig(a1,e)+k2·a2·sig(2-1/a2,Z2+k1·sig(a1,e))/(2a2-1);式中:sig(h,x)=((abs(x))h)·sign(x),a1、a2、k2均为设计参数,a2>a1>1,Z2表示观测器输出的观测值,符号函数sign(·)可替换为正弦过渡函数、双曲正切函数等,通过添加边界层方式降低抖振和超调;所采用的控制律形式为:u=-inv(B)·(k1·a1·G·(phi/k1+x2)+a·sig(r1,S)+b·sig(r2,S)+Z3);式中:r1>1、r2<1分别代表高幂次项和低幂次项,a、b为设计参数;步骤八、设计信号预处理策略(1)对外部输入的信号指令进行判断,当本周期信号指令与上一周期信号指令差值大于ζ1时,认定信号指令出现阶跃,此时对阶跃信号进行斜坡处理,保证信号变化斜率小于ζ2;(2)对控制量指令进行硬饱和处理,即仅允许控制量幅值在一定阈值内变化;步骤九、三阶舵机控制(1)根据步骤八设计的信号预处理策略,对外部输入信号进行信号预处理;(2)给定期望舵偏角指令θc,将其输入参考模型得到参考模型输出(3)采用PD控制律进行外环角度控制:根据角位移传感器得到实时舵偏角θ,根据角速度传感器得到实时角速度ω,由控制输入参考指令与实时舵偏角得到实时角度误差由PD控制律得到内环期望角速度(4)将实时角度误差信号e输入状态观测器,实现对状态量偏差以及对机械间隙、摩擦、温度变化、振动等引起的扰动的精确观测,Z1为估计值,Z2为估计值,Z3为以及由机械间隙、摩擦、温度变化振动等引起的扰动估计值;(5)由非线性滑模控制律得到控制量,由外环输出的期望角速度指令和实时角速度得到角速度误差,同时将扰动估计值Z3和状态观测量Z2引入非线性滑模控制律,得到舵机控制量u;(6)每个控制周期重复(1)到(5),以实现对期望舵偏指令信号的跟踪。相比于现有技术,本专利技术具有如下优点:1、本专利技术采用三阶舵机模型,从物理上更接近真实舵机模型。2、本专利技术对导弹舵面控制过程中由机械间隙、摩擦、温度变化、振动等引起的各类扰动进行了精确估计,并在控制量中加以补偿,提高了导弹舵面控制的精度、抗干扰性。3、本专利技术采用参考模型用来安排过渡过程,避免了超调的产生,进一步提高了控制系统的稳定性与鲁棒性以及响应速度。4、本专利技术提出了对信号进行预判断处理以及对控制量指令进行硬饱和处理两个控制策略,提高了工程实践性。5、本专利技术可有效提高导弹控制性能。附图说明图1为舵本文档来自技高网...
【技术保护点】
1.一种基于参考模型和扰动精确观测补偿的三阶舵机控制方法,其特征在于所述方法包括如下步骤:/n步骤一、设计三阶舵机控制器:/n所述三阶舵机控制器采用内外环结构,内环由扩张状态观测器、非线性滑模控制器、三阶舵机模型三部分组成,外环包括参考模型、PD角度控制器;/n步骤二、建立三阶舵机模型/n从控制输入u到舵偏角θ的三阶舵机模型如下:/n
【技术特征摘要】
1.一种基于参考模型和扰动精确观测补偿的三阶舵机控制方法,其特征在于所述方法包括如下步骤:
步骤一、设计三阶舵机控制器:
所述三阶舵机控制器采用内外环结构,内环由扩张状态观测器、非线性滑模控制器、三阶舵机模型三部分组成,外环包括参考模型、PD角度控制器;
步骤二、建立三阶舵机模型
从控制输入u到舵偏角θ的三阶舵机模型如下:
式中:为角速度,为角加速度,则x1=θ,Ke为电机反电势系数,τm、τe分别为舵机机电时间常数与电磁时间常数,i为比例系数,u为控制量;
步骤三、选择参考模型
选择参考模型的形式如下:
式中:T表示参考模型时间常数,E表示参考模型阻尼系数,s表示拉氏变换中的复数参变量,θc为期望舵偏角指令,为参考模型输出;
步骤四、选择外环控制律
外环为角度控制环,控制律采用PD控制律:
式中:Kp为比例控制系数,Kd为微分控制系数,θc为期望角度;
步骤五、建立内环二阶控制模型
令角速度跟踪误差为e=θc-θ,那么内环二阶控制模型为:
式中:为角加速度误差,为角速度误差的三阶导数,表示期望角速度,表示期望角加速度,表示期望的角速度三阶导数;
步骤六、建立二阶扩张状态观测器并设计状态观测器参数
针对内环二阶控制模型,建立如下形式二阶扩张状态观测器:
式中:Z1观测Z2观测Z3观测k1为扩张状态观测器设计参数;
步骤七、设计非线性滑模控制律
内环控制律采用非线性滑模控制律,依次进行滑模面设计和滑模控制律设计,其中:
所采用的滑模面为:
S=sig(a1,e)+k2·a2·sig(2-1/a2,Z2+k1·sig(a1,e))/(2a2-1);
式中:sig(h,x)=((abs(x))h)·sign(x)...
【专利技术属性】
技术研发人员:韦常柱,李源,崔乃刚,孙立伟,许河川,
申请(专利权)人:哈尔滨工业大学,
类型:发明
国别省市:黑龙;23
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。