一种基于混合相关向量机模型的弹药贮存可靠度评估方法技术

技术编号:24355841 阅读:22 留言:0更新日期:2020-06-03 02:32
本发明专利技术公开了一种基于混合相关向量机模型的弹药贮存可靠度评估方法,该方法包括以下步骤:S1、将PF核与RBF核线性组成混合函数(MF)核,由此建立混合核函数相关向量机(MF‑RVM)模型;S2、基于留一交叉验证方法,通过综合损失函数均值的计算判断模型优劣,从而选择最优模型;S3、基于QPSO的MF‑RVM模型求解;S4、根据小样本某型催泪弹实例数据进行建模;S5、根据模型预测可靠度值。本发明专利技术评估指标稳健,此外,本发明专利技术能够有效评估小样本非试验数据条件下的弹药贮存可靠度。

A method of ammunition storage reliability evaluation based on hybrid correlation vector machine model

【技术实现步骤摘要】
一种基于混合相关向量机模型的弹药贮存可靠度评估方法
本专利技术属于系统性能评估领域,具体涉及一种混合相关向量机模型的弹药贮存可靠度评估方法。
技术介绍
通常情况下,基于渐进理论的弹药贮存可靠度评估需要获得大量寿命数据。但是,弹药的寿命试验耗资巨大,且实施工程复杂,大样本数据难以获得,直接运用经典统计学方法处理小样本数据所得结果有失准确性。针对小样本情况,文献引入Bayes理论,利用先验信息进行可靠度评估,但有时所得结果主观性偏大。后来诸多学者通过自助扩容方法对寿命数据进行处理,获得了满足经典统计学方法的大样本数据,所得结果较为接近真值。但是,以上方法均是基于实际寿命试验所获得的数据,而在大多基层单位,不具备进行试验的条件,因此,需要寻找一种基于非试验数据的有效评估方法。为克服基层单位试验条件受限问题,本专利技术提出一种基于混合相关向量机模型的弹药贮存可靠度评估方法,据部队调研得知,在弹药贮存库室能够获得少量的如贮存时间、温湿环境等非试验数据,充分利用该类数据进行贮存可靠度评估,对弹药贮存可靠性的研究具有重要的理论意义和应用价值。
技术实现思路
为了科学、合理和全面地确定弹药贮存可靠度评估指标值,本专利技术一种基于混合相关向量机模型的弹药贮存可靠度评估方法,以解决小样本非试验数据条件下的弹药贮存可靠度评估的问题。本专利技术是这样实现的,一种基于混合相关向量机模型的弹药贮存可靠度评估方法,该方法包括以下步骤:S1、建立混合核函数相关向量机(MF-RVM)模型由于弹药贮存可靠度预测具有明显的非线性,需要引入核函数将其转化为线性。核函数及核参数的选取直接影响RVM模型的学习和泛化能力,因此,建立具有良好性能的弹药贮存可靠度RVM模型,关键是选择合适的核函数及核参数。核函数分为局部性核与全局性核,二者都属于单核函数。最常用的单核函数列于表1。表1常用单核函数多项式函数(PolynomialFunction,PF)核属于全局性核函数,其优点是绝大多数样本值都可以对核函数值产生影响。但是,若特征参数τ值越大,则维数越高,计算量也越大,同时增加了模型的复杂度,可能出现过拟合现象,从而导致泛化性能减弱。高斯径向基函数(RadialBasisFunction,RBF)核属于局部性核函数,具有较宽的收敛域,因此通用性较强,适用于各种高维、低维和大样本、小样本情况。宽度参数g控制了核函数的径向作用范围。当宽度参数g取值过大时,核函数对特征值的衰减变慢,导致模型的学习性能降低;反之,当宽度参数g取值过小时,泛化性能随之受到影响。综上,鉴于单核函数映射方式单一,在建立RVM模型评估弹药贮存可靠度问题中,采用单核函数有时不能准确描述特征的变化特点,故在建立模型时,综合各个单核函数的优势,同时避免各自不足,将PF核与RBF核线性组合成混合函数(MixedFunction,MF)核,由此建立混合核函数相关向量机(MixedKernelFunction-RelevanceVectorMachine,MF-RVM)模型。其中MF核的形式如下:式中,λ称为调节系数,且0≤λ≤1。S2、基于留一交叉验证方法,通过综合损失函数均值的计算判断模型优劣,从而选择最优模型为了得到可靠、稳定且具有良好学习、泛化性能的模型,可以采用交叉验证法进行模型的选择。其基本思想为:重复地使用样本数据,将给定样本容量为n的数据集进行切分,组合成样本容量分别为n1和n2的训练集与验证集,在此基础上反复训练、验证。交叉验证包括简单交叉验证、S折交叉验证、留P交叉验证等。由于弹药贮存可靠度评估可用数据样本量很少,鉴于留一交叉验证方法样本利用率高,且适合于小样本的情况,故本章在建立弹药贮存可靠度MF-RVM模型时,采用留一交叉验证进行模型选择。此时,使用其中1个元素作为验证集,剩余的n-1个元素作为训练集,即取n1=n-1,n2=1,从n个样本数据中任意选取n-1个作为训练样本有种可能。在模型选择时需要一定的损失函数值来衡量模型的性能。通常,所建模型所需的相关向量个数RV越少,且训练均方根误差train_RMS和验证均方根误差verify_RMSE越小,则模型整体性能越好。因此,根据以上参数,可用式(13)作为综合损失函数。S3、基于QPSO的MF-RVM模型求解由上述分析可知,模型中核参数的取值对模型的学习和泛化性能具有显著影响,因此需要一种精确、快速、稳定的核参数优化算法,找到最合适的核参数组合,从而建立最优的弹药贮存可靠度MF-RVM模型。综合近年来各个优化算法的优缺点,本文采用QPSO求解MF-RVM模型,其中上述损失函数均值作为寻优的适应度函数。根据以上基于QPSO求解MF-RVM模型的步骤,便可建立最终的弹药贮存可靠度评估模型。由于在建立MF-RVM模型时,采用了留一交叉验证法对所有可能的模型通过计算综合损失函数均值,进行了模型的选择,保证了最终模型的学习和泛化性能。因此,根据以上步骤所建立的弹药贮存可靠度模型,是基于MF核条件下的最优模型。S4、根据小样本某型催泪弹实例数据进行建模根据某科研项目组摘录的可用于建立某型催泪弹贮存可靠度MF-RVM模型的样本数据,如表1所示。表2某型催泪弹贮存年限、温湿环境及历史可靠度数据根据上表数据,将其分成三组,分别构成训练集、验证集与测试集。其中,前8组数据用作训练集和验证集,进行模型拟合求解,并采用留一交叉验证进行RVM模型的选择。第9组数据不参与模型训练,用作最终模型的泛化性能测试。S5、根据模型预测可靠度值结合Matlab软件,编写程序代码,取M=20,D=3,QQ=100,aa=1,bb=0.5,c1=c2=c3=c4=0.01,另外,设置初始核参数值范围分别为:0<λ<1,1<τ<5,-10<g<10,则可训练MF-RVM模型。经训练得到MF核参数的寻优路径如图2所示,核参数值如表3所示,权值w分量值如表4所示。表3QPSO寻优MF核参数结果表4某型催泪弹贮存可靠度MF-RVM模型的权值根据以上结果可得最终某型催泪弹贮存可靠度MF-RVM模型的具体表达式为:由表4可见,最终催泪弹贮存可靠度MF-RVM模型的大多数权值分量为零,体现了模型的稀疏性质。此时,非零权值的基函数所对应的样本向量为最终训练模型所用样本x1,x3,x7,称之为“相关向量”。附图说明图1是本专利技术方法的流程图。图2QPSO寻优MF核参数的路径图具体实施方式为了使本专利技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本专利技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利技术,并不用于限定本专利技术。本专利技术公开了一种基于误差谱的空地导弹命中精度评估方法,包括以下步骤:1、一种基于混合相关向量机模型的弹药贮存可靠度评估方法,其本文档来自技高网...

【技术保护点】
1.一种基于混合相关向量机模型的弹药贮存可靠度评估方法,其特征在于,该方法包括以下步骤:/nS1、将PF核与RBF核线性组成混合函数(MF)核,由此建立混合核函数相关向量机(MF-RVM)模型;/nS2、基于留一交叉验证方法,通过综合损失函数均值的计算判断模型优劣,从而选择最优模型;/nS3、基于QPSO的MF-RVM模型求解;/nS4、根据小样本某型催泪弹实例数据进行建模;/nS5、根据模型预测可靠度值。/n

【技术特征摘要】
1.一种基于混合相关向量机模型的弹药贮存可靠度评估方法,其特征在于,该方法包括以下步骤:
S1、将PF核与RBF核线性组成混合函数(MF)核,由此建立混合核函数相关向量机(MF-RVM)模型;
S2、基于留一交叉验证方法,通过综合损失函数均值的计算判断模型优劣,从而选择最优模型;
S3、基于QPSO的MF-RVM模型求解;
S4、根据小样本某型催泪弹实例数据进行建模;
S5、根据模型预测可靠度值。


2.如权利要求1所述的基于混合相关向量机模型的弹药贮存可靠度评估方法,其特征在于,在步骤S1中,根据RVM回归原理,给定归一化样本集此时的弹药贮存可靠度MF-RVM模型具体表示为:



该MF-RVM模型涉及三个主要核参数:PF核中的特征参数τ、RBF核中的宽度参数g,以及平衡二者之间影响作用大小的调节参数λ。


3.如权利要求1所述的基于混合相关向量机模型的弹药贮存可靠度评估方法,其特征在于,在步骤S2中,所述关键指标包括:



其中



并且Ri表示样本集中的可靠度值;表示通过模型得到的可靠度值。
进一步,将以上n个综合损失函数的均值作为交叉验证时MF-RVM模型选择的标准:



在训练样本量与验证样本量一定时,模型所需的RV越少,且train_RMSE和verify_RMSE越小,则综合损失函数值越小。因此,当给定具有不同参数的多个模型时,选择综合损失...

【专利技术属性】
技术研发人员:彭维仕
申请(专利权)人:中国人民解放军空军工程大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1