当前位置: 首页 > 专利查询>复旦大学专利>正文

能够同时调控热传导、热对流和热辐射的热隐身斗篷制造技术

技术编号:24207703 阅读:20 留言:0更新日期:2020-05-20 15:23
本发明专利技术属于红外技术领域,具体为一种能够同时调控热传导、热对流和热辐射的热隐身斗篷。本发明专利技术的热隐身斗篷,为二维双层壳结构;被隐藏区域无热流通过,同时影响背景的温度分布。设

A thermal invisibility cloak that can control heat conduction, convection and radiation at the same time

【技术实现步骤摘要】
能够同时调控热传导、热对流和热辐射的热隐身斗篷
本专利技术属于红外
,具体涉及能够同时调控热传导、热对流和热辐射的热隐身斗篷。
技术介绍
在传热过程中,热传导、热辐射和热对流总是同时存在。然而,现有的热学装置只考虑了热传导过程,这与实际条件是不一致的。事实上,根据普朗克热辐射定律,任何温度不为零的物体都会发出热辐射,热对流在我们的生活中更为普遍。因此,传统的热超构材料在这种条件下不能工作,这在很大程度上制约了其实际应用。为了解决这个问题,基于多孔介质中的傅里叶定律、Rosseland扩散近似和达西定律,在本专利中我们提出了一个可以同时处理热传导,热辐射和热对流(全热学)的有效媒质理论。此外,利用该理论本专利设计了一种全热学中的双层热隐身斗篷和热透明装置。通过不同边界条件下的有限元模拟验证了该理论。全热学器件在实际场景中有着广阔的应用前景,例如:高温或流体中的热伪装,热管理,非线性热学等等。
技术实现思路
本专利技术的目的在于提出一种能够同时调控热对流、热传导和热辐射的热隐身斗篷。本专利技术设计的能够同时调控热对流、热传导和热辐射的热隐身斗篷,为二维双层壳结构;可以使被隐藏区域无热流通过,同时不会影响背景的温度分布。本专利技术利用有限元模拟的方法验证理论结果,并利用到两种边界条件,即线热源和点热源边界条件。下面将阐述这一装置的设计原理:在考虑传热过程的多孔介质中,总热流J由传导热流J1,辐射热流J2和对流热流J3组成,其中,热传导过程通过Fourier定律描述,热辐射通过Rosseland扩散近似描述,多孔介质中的热对流过程通过达西定律描述:其中,ρf,Cf和ηf分别表示流体材料的密度,热容和动力学粘度。ζ为多孔介质的渗透率,P为压强(达西定律:)。κ为多孔介质的热导率,γ=16β-1n2σ/3为热辐射系数。β为Rosseland平均消光系数,n为相对折射率(在以下讨论中n=1),σ为Stefan-Boltzmann常数(其值等于5.67×10-8Wm-2K-4),T代表温度。由于多孔介质是由液体和固体组成,所以其中为多孔介质的孔隙率,κf和βf为流体的热导率和消光系数,κs和βs为固体的热导率和消光系数。热导率κ,消光系数的倒数β-1和渗透率ζ是控制三种传热方式的主要参数。总热流可由拉普拉斯方程写出,即:然后,用一个与坐标相关的函数f(x)描述与之间的关系:这里,我们并不关心f(x)的具体形式,引入它只是为了证明公式(4)能够被写成拉普拉方程的形式。此时,方程(4)可写为:为了确保公式(7)在全局区域的通解一致,相应的参数需要满足:此时方程(6)可写为:其中,有效媒质理论适用于拉普拉斯方程主导的物理过程,而公式(8)恰好为拉普拉斯方程的形式,所以我们可以利用有效媒质理论来同时描述全热学过程。热传导、热辐射和热对流主要可以由这三个参数控制:热导率κ,消光系数的倒数β-1和渗透率ζ,因此以下主要讨论这三个参数。对于一个二维双层热隐身斗篷,用κc,和ζc表示核的热导率,消光系数的倒数和渗透率,用κs1,和ζs1表示内壳层相应的参数,用Ks2,和ζs2表示外壳层相应的参数。根据双层热隐身斗篷的特性,需要内壳层为Ks1→0,和ζs1→0,然后根据有效媒质理论,可以得到:其中,为内核层在整个核壳结构中的面积分数,rs1为内壳层半径,rs2为外壳层半径;当背景材料(即核壳结构的外部)的参数满足公式(9)-公式(11)的要求时,核壳结构的存在不会对背景的热场产生任何影响,而且中间核的性质可以任意改变,因此内壳层加上外壳层称为双层热隐身斗篷。由于热辐射和热对流过程是与温度相关的,即温度越高,效应越强。所以本专利技术可应用于高温热伪装,高温热二极管等等。本专利技术的优点:1、本专利技术提出的理论可同时适用于热传导、热辐射和热对流;2、本专利技术提出的方法可以适用于高温情况;3、本专利技术中多个参数可调,热导率,消光系数和渗透率均可调节。附图说明图1是双层热隐身斗篷的二维示意图,隐身斗篷内部物体处无热流通过而且背景温度分布均匀,达到了热隐身的目的。图2是双层热隐身斗篷在线热源边界条件下的二维模拟图。根据双层热隐身斗篷特性以及公式(8),(9)和(10)。在模拟中设置参数如下:模拟尺寸大小为10×10cm2,对于热透明结构:rc=2cm,rs1=2.6cm,rs2=3.2cm。Kc=360Wm-1K–1,Ks2=342Wm-1K–1,Kb=70Wm-1K–1,βc=0.1m-1,βs=0.05m-1,βb=0.25m-1,ζc=5×10-12m2,ζs=9.8×10-12m2,ζb=2×10-12m2。对于背景::rc=2cm,rs=3.2cm。κc=κs=κb=70Wm-1K–1,βc=βs=βb=0.25m-1,ζc=ζs=ζb=2×10-12m2。图3是双层热隐身斗篷在点热源边界条件下的二维模拟图。(a1-a3)为热隐身斗篷模拟图,(b1-b3)为与其对应的参考图。具体实施方式下面结合具体实例和附图来详细说明本专利技术,但本专利技术并不仅限于此。双层热隐身斗篷的二维示意图展示在图1中,在隐身区域内无热流进入,保持恒温状态,背景区域温度分布均匀,达到了双层热隐身斗篷的效果。然后本专利利用有限元模拟软件COMSOLMultiphysics进行模拟,模拟的结果见图2和图3。其中图2是线热源边界条件下的模拟结果,图3是点热源边界条件下的模拟结果。温度场和压力场同时平行的应用在模拟中。在下面的讨论中,我们假设多孔介质中的液体为水,那么κf=0.06Wm-1K-1,ρf=103kg·m-3,cf=4.2×103J·kg-1K-1,nf=10-3Pa·s。孔介质孔隙率被设置为0.1,ρf和cf分别被设置为103kg·m-3和103J·kg-1K-1。在图2中(a1-a3)和(c1-c3)为热隐身斗篷模拟图,(b1-b3)和(d1-d3)为与其对应的参考图。(a1-a3)和(b1-b3)速度方向v沿+x方向,(c1-c3)和(d1-d3)速度方向v沿-x方向。(a1)-(d1)图的温度区间为(283~313)K,(a2)-(d2)图的温度区间为(283~613)K,(a3)-(d3)图的温度区间为(283~913)K。对于双层热隐身斗篷,要求被隐身区域保持恒温而且背景区域温度分布均匀。所以我们设置ζs1=1×10-15m2。对比参考图,可得出双层热隐身斗篷成立的结论。根据达西定律,速度的改变会导致热对流方向的改变,对比(a1)与(c1),发现虽然温度分布发生改变,但隐身特性依然成立,证实了热对流过程在热传输过程的作用。另外,我们假设辐射热流与温度的四次方成正比,对流热流与温度成正比,传导热流与温度无关,所以总热流的大小应与温度相关。通过对比同一速度下不同温度边界条件的模拟图,可本文档来自技高网...

【技术保护点】
1.一种能够同时调控热传导、热对流和热辐射的热隐身斗篷,其特征在于,为二维双层壳结构;被隐藏区域无热流通过,同时影响背景的温度分布。/n

【技术特征摘要】
1.一种能够同时调控热传导、热对流和热辐射的热隐身斗篷,其特征在于,为二维双层壳结构;被隐藏区域无热流通过,同时影响背景的温度分布。


2.根据权利要求1所述的能够同时调控热传导、热对流和热辐射的双层热隐身斗篷,其特征在于,设计原理如下:
在考虑传热过程的多孔介质中,总热流J由传导热流J1,辐射热流J2和对流热流J3组成,其中,热传导过程通过Fourier定律描述,热辐射通过Rosseland扩散近似描述,多孔介质中的热对流过程通过达西定律描述:









其中,ρf,Cf和ηf分别表示流体材料的密度,热容和动力学粘度,ζ为多孔介质的渗透率,P为压强,κ为多孔介质的热导率,γ=16β-1n2σ/3为热辐射系数,β为Rosseland平均消光系数,n为相对折射率,取n=1,σ为Stefan-Boltzmann常数,其值等于5.67×10-8Wm-2K-4,T代表温度;
由于多孔介质是由液体和固体组成,所以其中为多孔介质的孔隙率,κf和βf为流体的热导率和消光系数,κs和βs为固体的热导率和消光系数;
热导...

【专利技术属性】
技术研发人员:黄吉平杨帅须留钧
申请(专利权)人:复旦大学
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1