【技术实现步骤摘要】
基于组合Copula函数的拉丁超立方抽样法概率潮流计算方法
本专利技术涉及分析电力系统
,更具体的,涉及一种基于组合Copula函数的拉丁超立方抽样法概率潮流计算方法。
技术介绍
在传统电力系统分析中,负荷的波动、发电机的停运和电网运行方式的变化等因素造成了电力系统一定程度上的不确定性。随着电力工业的飞速发展,以太阳能和风能为代表的可再生能源接入电网,因光照强度和风速的不确定性,给电网带来了明显的间歇性和随机性,其结果直接导致了电力系统不稳定性的显著增加,因此用于电力系统分析的概率潮流算法的研究日益重要。为了得到精确的概率潮流计算结果来进行潮流分析,需要得到输出变量的概率密度函数,但前提是先得到输入变量的累积分布函数,并同时考虑输入随机变量之间的相关性。传统的蒙特卡洛模拟利用随机抽样原理采用随机采样法获得输入变量的样本矩阵,但是需要大量样本的确定性潮流计算才能得到精度较高的输出变量概率分布,导致计算量大、计算时间过长。中国专利《结合拉丁超立方抽样的双向迭代并行概率潮流计算方法》,其申请号为20151023114 ...
【技术保护点】
1.一种基于组合Copula函数的拉丁超立方抽样法概率潮流计算方法,其特征在于:所述方法包括步骤如下:/nS1:根据分布式能源发电功率变量的相关性和分布式能源出力的尾部对称特性选择多个相应的Copula函数构成一个组合Copula函数;/nS2:再利用组合Copula函数生成满足分布式能源发电功率变量相关系数矩阵为ρ
【技术特征摘要】
1.一种基于组合Copula函数的拉丁超立方抽样法概率潮流计算方法,其特征在于:所述方法包括步骤如下:
S1:根据分布式能源发电功率变量的相关性和分布式能源出力的尾部对称特性选择多个相应的Copula函数构成一个组合Copula函数;
S2:再利用组合Copula函数生成满足分布式能源发电功率变量相关系数矩阵为ρX的随机数矩阵DM×N;
S3:利用拉丁超立方抽样法对步骤S2中所生成的随机数矩阵DM×N进行抽样,并记录所抽样本在随机数矩阵第一列的位置;根据所记录的位置,在随机样本矩阵的第二列至最后一列选取对应的样本,建立拉丁超立方抽样后的样本矩阵DLK×M;
S4:采用三次样条插值法求出分布式能源发电功率变量的累积分布函数的逆函数;
S5:对于分布式能源发电功率变量Xm,其中m=1,2,...,M,其累积分布函数为y=Fm(x),和步骤S4得到的累积分布函数的逆函数,根据拉丁超立方抽样后的样本矩阵DLK×M,建立分布式能源发电功率变量的样本矩阵XK×M;
S6:将步骤S5所建立的分布式能源发电功率变量的样本矩阵XK×M作为确定性潮流计算模型的输入量进行潮流计算,得到输出变量的离散结果,最后利用核密度估计对输出变量的离散结构进行拟合,从而得到概率密度函数。
2.根据权利要求1所述的基于组合Copula函数的拉丁超立方抽样法概率潮流计算方法,其特征在于:步骤S1中,假设所述的分布式能源发电功率变量有M个随机变量,分别为X1,X2,...,XM,其相关系数矩阵为ρX,随机数的个数为N;根据分布式能源发电功率变量的相关性和分布式能源出力的尾部对称特性选择多个相应的Copula函数构成一个组合Copula函数,
其中所述的Copula函数包括t-Copula函数、Normal-Copula函数、Clayton-Copula函数、Gumbel-Copula函数、Frank-Copula函数。
3.根据权利要求2所述的基于组合Copula函数的拉丁超立方抽样法概率潮流计算方法,其特征在于:步骤S1中,构建的组合...
【专利技术属性】
技术研发人员:陈娥,武小梅,冯乙峰,刘博,
申请(专利权)人:广东工业大学,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。