【技术实现步骤摘要】
一种基于骨骼点检测的无人机快速姿势控制系统与方法
本专利技术涉及深度学习骨骼点检测算法的无人机智能控制系统
,特别涉及一种基于骨骼点检测的无人机快速姿势控制系统与方法。
技术介绍
近年来无人机开始出现在人类社会生产生活的方方面面,在航拍、监控、安防、救灾等领域得到了广泛的应用,但早期各种场景下无人机的实际应用多数基于人为遥控或干预,自动化程度不高。无人机的自动化程度是其能否在未来起到更大作用的决定性因素之一。随着无人机自动化工作需求的不断扩大,基于计算机视觉的无人机手势控制成为当下研究的热点之一,其主要包括目标检测、跟踪、手势识别、指挥者再识别及无人机的飞行控制五个方面。人体骨骼关键点对于描述人体姿态,预测人体行为至关重要。因此人体骨骼关键点检测是诸多计算机视觉任务的基础,例如动作分类,异常行为检测,以及自动驾驶等等。现有的无人机智能应用主要集中在自主壁障和无人机编队技术,姿势控制无人机飞行的应用较少。同时传统的姿势控制无人机主要有以下几点不足:使用地面站作为处理设备,严重限制了姿势控制无人机的灵活性; ...
【技术保护点】
1.一种基于骨骼点检测的无人机快速姿势控制系统,其特征在于,包括/n识别及跟踪模块,识别并跟踪人群中特定指挥者;/n姿势识别模块,识别无人机的姿势;/n飞行控制模块,根据姿势识别结果,使得云台相机转角始终跟随指挥者转动。/n
【技术特征摘要】
1.一种基于骨骼点检测的无人机快速姿势控制系统,其特征在于,包括
识别及跟踪模块,识别并跟踪人群中特定指挥者;
姿势识别模块,识别无人机的姿势;
飞行控制模块,根据姿势识别结果,使得云台相机转角始终跟随指挥者转动。
2.根据权利要求1所述的一种基于骨骼点检测的无人机快速姿势控制系统的控制方法,其特征在于,识别及跟踪模块通过如下方法识别并跟踪人群中特定指挥者:
步骤一:初始设定程序的标志位flag为真,flag的作用是用来判断是否需要重复去做指挥者的人脸检测和识别,判断flag是否为真,若为真,用MTCNN人脸检测算法对从大疆云台相机采集的帧序列进行人脸检测,该算法输出人脸检测框的左上角坐标和右下角坐标,转至步骤二,若为假,转至步骤三;
步骤二:对MTCNN人脸检测算法的输出结果进行人脸识别,输出人脸的特征向量,计算特征向量与预设特征脸数据库中特征向量欧式距离Dij,若距离小于设定的阈值ε,同时MTCNN人脸检测算法有输出结果,即size>0,则按比例放大人脸检测框作为KCF跟踪算法的初始跟踪,若大于设定的人脸特征向量距离阈值,转至步骤一;
步骤三:根据MTCNN的人脸检测框按比例放大,并作为KCF跟踪算法的初始跟踪框,用KCF跟踪算法进行目标跟踪;
步骤四:若KCF目标跟踪算法的滤波器输出响应小于预设的滤波器输出响应阈值,设置flag为假,转至步骤一;反之继续跟踪。
3.根据...
【专利技术属性】
技术研发人员:柯良军,杨元坤,陆鑫,张一帆,
申请(专利权)人:西安交通大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。