【技术实现步骤摘要】
活体检测模型的训练方法、装置、计算机设备和存储介质
本申请涉及人工智能
,特别是涉及一种活体检测模型的训练方法、装置、计算机设备和存储介质。
技术介绍
近红外活体检测,作为一种身份见证方法,利用红外光的光谱波段禹可见光不同,无需用户配合,可在近红外图像上进行盲测。降低了活体检测算法的繁琐度与提高其精度,并且降低生产成本的同时,可以更好地保证相关用户与企业的利益。传统的近红外活体检测方法,大多分两步。首先,利用检脸器在可见光所成的彩色图片上检测人脸;然后在近红外图像对应位置提取人脸的LBP特征输入至活体判别器进行活体判断。这种方式,每一步骤都是一个独立的任务,所使用到的检脸器和活体判别器都需要单独分开训练,模型之间的契合度不高,活体判别器的准确性容易受到检脸器的影响,导致训练得到的模型的准确性低。
技术实现思路
基于此,有必要针对上述技术问题,提供一种能够提高模型训练准确性的活体检测模型的训练方法、装置、计算机设备和存储介质。一种活体检测模型的训练方法,所述方法包括:获取初始活 ...
【技术保护点】
1.一种活体检测模型的训练方法,所述方法包括:/n获取初始活体检测模型,所述初始活体检测模型包括初始候选区域生成网络及初始活体分类网络;/n获取第一训练样本集及第二训练样本集;所述第二训练样本集对应的训练样本中包括彩色图像、与所述彩色图像对应的近红外图像及对应的目标活体位置信息;/n根据所述第一训练样本集训练所述初始候选区域生成网络直至收敛,得到第一候选区域生成网络;/n根据所述第一候选区域生成网络及所述第二训练样本集训练所述初始活体分类网络直至收敛,得到第一活体分类网络;/n将所述彩色图像输入到所述第一候选区域生成网络中,得到当前人脸候选区域位置信息,将所述当前人脸候选区 ...
【技术特征摘要】
1.一种活体检测模型的训练方法,所述方法包括:
获取初始活体检测模型,所述初始活体检测模型包括初始候选区域生成网络及初始活体分类网络;
获取第一训练样本集及第二训练样本集;所述第二训练样本集对应的训练样本中包括彩色图像、与所述彩色图像对应的近红外图像及对应的目标活体位置信息;
根据所述第一训练样本集训练所述初始候选区域生成网络直至收敛,得到第一候选区域生成网络;
根据所述第一候选区域生成网络及所述第二训练样本集训练所述初始活体分类网络直至收敛,得到第一活体分类网络;
将所述彩色图像输入到所述第一候选区域生成网络中,得到当前人脸候选区域位置信息,将所述当前人脸候选区域位置信息及所述近红外图像输入所述第一活体分类网络中,得到当前活体位置信息;
根据所述当前活体位置信息及所述目标活体位置信息的差异调整所述第一候选区域生成网络的参数,并返回将所述彩色图像输入到所述第一候选区域生成网络中的步骤直至收敛,得到目标候选区域生成网络;
根据所述目标候选区域生成网络及所述第二训练样本集训练所述第一活体分类网络直至收敛,得到目标活体分类网络,根据所述目标候选区域生成网络及所述目标活体分类网络得到训练好的目标活体检测模型。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:
获取所述目标活体检测模型;
获取待检测人脸对应的待检测彩色图像和待检测近红外图像;
将所述待检测彩色图像输入至所述目标活体检测模型对应的目标候选区域生成网络,得到目标人脸候选区域位置信息;
将所述目标人脸候选区域位置信息及所述待检测近红外图像输入至所述目标活体检测模型对应的目标活体分类网络中,得到活体检测结果。
3.根据权利要求2所述的方法,其特征在于,所述目标候选区域生成网络包括第一卷积层、第二卷积层及第一池化层,所述将所述待检测彩色图像输入至所述目标活体检测模型对应的目标候选区域生成网络,得到目标人脸候选区域位置信息,包括:
将所述待检测彩色图像输入所述第一卷积层中,通过所述第一卷积层对所述待检测彩色图像进行卷积运算,得到第一特征矩阵;
将所述第一特征矩阵输入所述第一池化层中,通过所述第一池化层对所述第一特征矩阵中的每个向量中最大的权重进行投影得到归一化的第二特征矩阵;
将所述第二特征矩阵输入所述第二卷积层中,通过所述第二卷积层对所述第二特征矩阵进行卷积计算,得到目标人脸候选区域位置信息。
4.根据权利要求2所述的方法,其特征在于,所述目标活体分类网络包括第三卷积层、第四卷积层及第二池化层,所述将所述目标人脸候选区域位置信息及所述待检测近红外图像输入至所述目标活体检测模型对应的目标活体分类网络中,得到活体检测结果,包括:
根据所述目标人脸候选区域位置信息从所述待检测近红外图像上截取对应的感兴趣区域图像,将所述感兴趣区域图像输入第三卷积层中,通过所述第三卷积层对所述感兴趣区域图像进行卷积运算,得到第三特征矩阵;
将所述第三特征矩阵输入所述第二池化层中,通过所述第二池化层对所述第三特征矩阵中的每个向量中最大的权重进行投影得到归一化的第四特征矩阵;
将所述第四特征矩阵输入至第四卷积层中,通过所述第四卷积层对第四特征矩阵进行卷积计算,得到活体检测...
【专利技术属性】
技术研发人员:赵娅琳,陆进,陈斌,宋晨,
申请(专利权)人:平安科技深圳有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。