一种针对航空发动机故障诊断的支持三阶张量机建模方法技术

技术编号:23288564 阅读:36 留言:0更新日期:2020-02-08 18:30
本发明专利技术属于航空发动机的故障诊断技术领域,提供一种针对航空发动机故障诊断的支持三阶张量机建模方法。将航空发动机的时间序列数据构建为一种具有三阶张量结构的数据形式;在构建的三阶张量数据下,利用拉格朗日乘子方法获得具有张量內积运算的对偶支持三阶张量机模型;通过张量的Tucker分解方法来近似表示该张量內积运算,并获得具有张量Tucker分解形式下的对偶支持三阶张量机。本发明专利技术的优点:一方面它避免了数据本身在训练的过程中可能遇到的维度灾难问题,另一方面它能够保留原始航空发动机时间序列数据的大部分耦合信息,并能精准预测航空发动机在未来飞行中是否发生喘振故障。

A modeling method for aeroengine fault diagnosis with support of third-order tensor machine

【技术实现步骤摘要】
一种针对航空发动机故障诊断的支持三阶张量机建模方法
本专利技术属于航空发动机的故障诊断
,涉及一种针对航空发动机故障诊断的支持三阶张量机建模方法,具体是针对航空发动机的喘振故障来设计一种支持三阶张量机的诊断预测模型。
技术介绍
随着航空事业的不断发展,飞机的安全性和可靠性越来越引起了人们的重视。如果飞机一旦发生故障问题,轻则影响飞机的性能,重则机毁人亡。另外,值得注意的是航空发动机既是飞机的心脏,也是一个最容易发生故障的核心部件。在航空发动机的众多故障问题中,喘振故障是一种最为常见的危险因素,它不仅直接影响着航空发动机的性能,而且对飞机的安全性以及整个航空事业的发展造成了巨大的威胁。解决这个问题的有效方法主要是针对航空发动机以往的喘振故障数据提出一种数据驱动模型,从而预测航空发动机的未来是否发生喘振故障并采取相应的措施来保证飞机的安全性。目前,预测航空发动机喘振故障问题的方法有以下几种:1)基于故障树的分析方法。该方法主要是从喘振故障的监测出发来模拟飞机飞行中的实时数据,并根据监控的状况采用故障树方法来分析故障的详细原因。然而,这种分析方法要求分析故障的人员必须熟悉所分析的对象系统以及熟悉地应用该分析方法,这样就造成了不同的分析人员会给出不同的故障树结果。另外对于故障树的计算也是非常的复杂,很难精确的计算发生故障的具体原因。2)基于最小二乘支持向量机的分析方法。该方法是利用航空发动机的气路参数,建立最小二乘支持向量机模型来对航空发动机进行状态监控。即,根据建立的模型来监控航空发动机的低压转子转速(n1),高压转子转速(n2)和尾喷管出口温度(T6),并通过预测值与真实值的相对误差率来分析喘振故障。但是,最小二乘支持向量机是把喘振的数据集作为一种向量模式来处理,这样就没有充分考虑到数据之间相互耦合,相互影响的自然关系。另外,如果数据集被强行的采用向量表示,也会导致原始数据的时序关联性遭到破坏,产生的数值误差也是难免的。综合以上论述,本专利技术设计的支持三阶张量机是一种能够精确预测具有耦合时间序列数据的航空发动机喘振故障。
技术实现思路
本专利技术针对最小二乘支持向量机模型在航空发动机故障诊断中所带来的局限性问题,提供了一种支持三阶张量机模型,并获得了更好的预测精确度。由于航空发动机是一种高度复杂的气动-热力-机械系统,它所生成的时间序列数据具有很强的时序关联性,耦合性与多模态特征,因此,如何在多变的全包线环境下来预测航空发动机的喘振故障一直是一个挑战性的难题。本专利技术的技术方案:一种针对航空发动机故障诊断的支持三阶张量机建模方法,用于预测航空发动机在未来飞行时间中是否会发生喘振故障问题;首先,将航空发动机的时间序列数据构建为一种具有三阶张量结构的数据形式;然后,在构建的三阶张量数据下,利用拉格朗日乘子方法获得具有张量內积运算的对偶支持三阶张量机模型;最后,通过张量的Tucker分解方法来近似表示该张量內积运算,并获得具有张量Tucker分解形式下的对偶支持三阶张量机;具体步骤如下:步骤1:通过奇异谱分析的嵌入思想,把具有一维向量模式的航空发动机数据x=[x1,x2,…,xn]T构建为一种长宽高分别为I1,I2,I3的三阶张量数据(1.1)首先,将航空发动机的一维向量数据x=[x1,x2,…,xn]T分割为一个如下的矩阵形式:其中,x1,x2,…,xn是航空发动机在飞行过程中离散采集的n个时间序列数据,是将上述离散时间序列数据通过分割移动构成的I1×l的矩阵,n=I1l是数据的总数,l=I2+I3-1是矩阵的列数,I1,I2与I3分别为张量在长、宽与高等方向的总层数;(1.2)其次,通过奇异谱分析的嵌入方法将矩阵的元素嵌入到三阶张量在长方向上的每一层切片中,即第i层切片是如下的矩阵形式其中,是矩阵中的第i行的元素,Xi∷是第i层长方向上的切片矩阵;(1.3)最后,通过定义三阶张量数据中的每一个元素来获得构建的张量即张量的第i1i2i3元素是如下形式:其中i1=1,2,…,I1;i2=1,2,…,I2;i3=1,2,…,I3;是矩阵中的第i1行与第i2+i3-1列处的元素;步骤2:在构建的三阶张量数据下,利用拉格朗日乘子方法获得具有张量內积运算的对偶支持三阶张量机模型,即內积形式的对偶支持三阶张量机模型如下:其中,Xp与Xq分别是构造的第p个与第q个三阶张量数据,yp与yq是航空发动机数据定义的正常标签或喘振标签,αp,αq是第p个与第q个拉格朗日乘子,d是张量数据的总个数,c是正则化参数;步骤3:针对具有內积形式的对偶支持三阶张量机模型,通过张量的Tucker分解方法来近似获得具有Tucker分解形式的对偶支持三阶张量机,即Tucker分解形式的对偶支持三阶张量机模型如下:其中,是对张量Xp(Xq)进行Tucker分解后获得的核张量Gp(Gq)中的第k1k2k3(r1r2r3)元素,符号<,>是內积运算,∑是求和运算,∏是求积运算,是对张量Xp(Xq)进行Tucker分解后获得的因子矩阵中的第kt(rt)列向量,n1,n2,n3(s1,s2,s3)是核张量Gp(Gq)在长,宽与高等方向的总层数,t是因子矩阵的下角标,并说明第t个因子矩阵是本专利技术的有益效果:Tucker分解形式的对偶支持三阶张量机模型充分考虑了航空发动机数据之间相互耦合,相互影响的自然关系。一方面它避免了数据本身在训练的过程中可能遇到的维度灾难问题,另一方面它能够保留原始航空发动机时间序列数据的大部分耦合信息,并能精准预测航空发动机在未来飞行中是否发生喘振故障。附图说明图1是航空发动机在发生喘振前后,通过传感器测量获得的低压转子转速(n1)的部分数据趋势图。注:趋势图中的实心点表示航空发动机的正常数据,空心点表示航空发动机的喘振数据。图2是航空发动机在发生喘振前后,通过传感器测量获得的高压转子转速(n2)的部分数据趋势图。注:趋势图中的实心点表示航空发动机的正常数据,空心点表示航空发动机的喘振数据。图3是航空发动机在发生喘振前后,通过传感器测量获得的尾喷管出口温度(T6)的部分数据趋势图。注:趋势图中的实心点表示航空发动机的正常数据,空心点表示航空发动机的喘振数据。具体实施方式以下结合附图和技术方案,进一步说明本专利技术的具体实施方式。实施例步骤1:通过奇异谱分析的嵌入方法,把具有一维时间序列的低压转子转速(图1),高压转子转速(图2)和尾喷管出口温度(图3)等数据集构建为一种具有元素(1)形式的三阶张量数据集。步骤2:在低压转子转速(图1),高压转子转速(图2)和尾喷管出口温度(图3)构建的三阶张量数据集下,通过拉格朗日乘子方法获得具有內积形式(2)描述的对偶支持三阶张量机模型。步骤3:通过张量的Tucker分解方法来近似內积形式的对偶支持三阶张量机模型(2),并获得了具本文档来自技高网
...

【技术保护点】
1.一种针对航空发动机故障诊断的支持三阶张量机建模方法,用于预测航空发动机在未来飞行时间中是否会发生喘振故障问题;首先,将航空发动机的时间序列数据构建为一种具有三阶张量结构的数据形式;然后,在构建的三阶张量数据下,利用拉格朗日乘子方法获得具有张量内积运算的对偶支持三阶张量机模型;最后,通过张量的Tucker分解方法来近似表示该张量內积运算,并获得具有张量Tucker分解形式下的对偶支持三阶张量机;/n其特征在于,具体步骤如下:/n步骤1:通过奇异谱分析的嵌入思想,把具有一维向量模式的航空发动机数据x=[x

【技术特征摘要】
1.一种针对航空发动机故障诊断的支持三阶张量机建模方法,用于预测航空发动机在未来飞行时间中是否会发生喘振故障问题;首先,将航空发动机的时间序列数据构建为一种具有三阶张量结构的数据形式;然后,在构建的三阶张量数据下,利用拉格朗日乘子方法获得具有张量内积运算的对偶支持三阶张量机模型;最后,通过张量的Tucker分解方法来近似表示该张量內积运算,并获得具有张量Tucker分解形式下的对偶支持三阶张量机;
其特征在于,具体步骤如下:
步骤1:通过奇异谱分析的嵌入思想,把具有一维向量模式的航空发动机数据x=[x1,x2,…,xn]T构建为一种长宽高分别为I1,I2,I3的三阶张量数据
(1.1)首先,将航空发动机的一维向量数据x=[x1,x2,…,xn]T分割为一个如下的矩阵形式:



其中,x1,x2,…,xn是航空发动机在飞行过程中离散采集的n个时间序列数据,是将上述离散时间序列数据通过分割移动构成的I1×l的矩阵,n=I1l是数据的总数,l=I2+I3-1是矩阵的列数,I1,I2与I3分别为张量在长、宽与高等方向的总层数;
(1.2)其次,通过奇异谱分析的嵌入方法将矩阵的元素嵌入到三阶张量在长方向上的每一层切片中,即第i层切片是如下的矩阵形式



其中,是矩阵中的第i行的元素,Xi::是第i层长方向上的切片矩阵;
(1....

【专利技术属性】
技术研发人员:孙涛孙希明
申请(专利权)人:大连理工大学
类型:发明
国别省市:辽宁;21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1