一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统技术方案

技术编号:23150823 阅读:45 留言:0更新日期:2020-01-18 14:08
本发明专利技术公开了一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统,方法包括:获取训练数据集,并对训练数据集中的图像进行裁剪,得到块图像;搭建网络模型,采用批归一化和残差学习相结合的方式,采用最优的混合膨胀率模式,并引入多尺度结构,得到端到端的图像去噪模型;设置网络模型超参数,选择损失函数和优化方法对所述图像去噪模型进行训练,得到训练好的图像去噪模型;将噪声图片变换处理后输入到训练好的图像去噪模型中,将得到的图片做平均操作后输出去噪后的图片。本发明专利技术能够降低网络的参数量同时保证网络的去噪性能,且能够在去除图片噪声的同时保留住图片锋利的边缘和精细的细节信息。

An image denoising method and system based on multi-scale expansion convolution residual network

【技术实现步骤摘要】
一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统
本专利技术涉及图像去噪
,尤其涉及一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统。
技术介绍
图像去噪是计算机视觉领域一个经典而又活跃的问题。人们在获取图像的过程中,会由于光照、温度、天气等不可抗拒外部环境噪声的干扰,和电阻、电磁等元器件对于成像设备的影响,导致图像在数字化和成像过程中产生噪声,从而影响图像质量,进而影响后期的图像传播和图像处理,如动作识别、图像分割等。因此,图像去噪技术具有非常重要的研究意义。针对不同图像自身的特点以及噪声的规律,目前,图像去噪算法主要分为:传统去噪算法和基于深度神经网络的去噪算法。传统去噪算法主要分为:稀疏模型、梯度模型、马尔可夫随机场模型和非局部自相似模型。其中最流行的是基于非局部自相似模型的方法,像BM3D、WNNM等。这种方法可以利用到图像的自相似性信息,获得了较好的去噪效果。然而,这些方法在测试的过程中涉及复杂的优化问题,这给实际应用带来了困难。而且,当图像的自相似性低的时候会产生过平滑的结果。基于深度神经网络的去噪算法,可以利用神本文档来自技高网...

【技术保护点】
1.一种基于多尺度膨胀卷积残差网络的图像去噪方法,其特征在于,包括:/n获取训练数据集,并对所述训练数据集中的图像进行裁剪,得到块图像;/n搭建网络模型,采用批归一化和残差学习相结合的方式,采用最优的混合膨胀率模式,并引入多尺度结构,得到端到端的图像去噪模型;/n设置网络模型超参数,选择损失函数和优化方法对所述图像去噪模型进行训练,得到训练好的图像去噪模型;/n将噪声图片变换处理后输入到所述训练好的图像去噪模型中,将得到的图片做平均操作后输出去噪后的图片。/n

【技术特征摘要】
1.一种基于多尺度膨胀卷积残差网络的图像去噪方法,其特征在于,包括:
获取训练数据集,并对所述训练数据集中的图像进行裁剪,得到块图像;
搭建网络模型,采用批归一化和残差学习相结合的方式,采用最优的混合膨胀率模式,并引入多尺度结构,得到端到端的图像去噪模型;
设置网络模型超参数,选择损失函数和优化方法对所述图像去噪模型进行训练,得到训练好的图像去噪模型;
将噪声图片变换处理后输入到所述训练好的图像去噪模型中,将得到的图片做平均操作后输出去噪后的图片。


2.根据权利要求1所述的方法,其特征在于,所述获取训练数据集,并对所述训练数据集中的图像进行裁剪,得到块图像,包括:
获取训练数据集,并根据网络的接受域大小对所述训练数据集中的图像进行裁剪,得到块图像。


3.根据权利要求1所述的方法,其特征在于,所述设置网络模型超参数,选择损失函数和优化方法对所述图像去噪模型进行训练,得到训练好的图像去噪模型,包括:
将所述块图像块按照批量尺寸组合一起作为输入,利用高斯白噪声模拟真实噪声添加到所述图像块上;
设置网络模型超参数,设置权值初始化方式,设置网络模型的损失函数;
利用随机梯度下降法和反向回传算法训练所述图像去噪模型,得到训练好的图像去噪模型。


4.根据权利要求3所述的方法,其特征在于,所述超参数包括:网络模型的学习率、衰减率和训练次数。


5.一种基于多尺度膨胀卷积残差网络的...

【专利技术属性】
技术研发人员:李東洁金一陈怀安陈恩红竺长安
申请(专利权)人:中国科学技术大学
类型:发明
国别省市:安徽;34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1