当前位置: 首页 > 专利查询>天津大学专利>正文

一种内燃机噪声源识别方法技术

技术编号:23097723 阅读:37 留言:0更新日期:2020-01-14 20:19
本发明专利技术涉及一种内燃机噪声源识别方法,步骤如下:采集内燃机标准工况和倒拖工况的整机噪声信号,测试标准工况下缸盖、活塞敲击点主推力侧、喷油泵、涡轮增压器、空压机、油底壳、齿轮罩盖、缸盖罩的振动信号和缸压信号;对振动信号和噪声信号进行去直流、去趋势项和滤波预处理,以减少信号采集误差;对预处理的噪声信号进行改进变分模态分解IVMD,自适应获得不同频段的信号分量;采用小波变换对分解的噪声分量进行时频分析,确定各噪声分量时频、功率谱特征;根据时频分析结果和内燃机先验知识进行内燃机阶次噪声识别,并采用倒拖试验和相关性分析确认分离结果;分离内燃机的非阶次噪声源。

A noise source identification method for internal combustion engine

【技术实现步骤摘要】
一种内燃机噪声源识别方法
本专利技术涉及一种内燃机噪声源识别方法。
技术介绍
随着汽车工业的不断发展,车辆噪声对人们生活环境和身心健康影响越来越严重,内燃机作为车辆最主要的噪声源,已成为车辆噪声控制的首要目标,所以有效的降低内燃机辐射噪声对改善城市声环境具有重要意义。在内燃机NVH控制工程中,噪声源的识别是先决条件。合理控制内燃机振动噪声,首先应该分析内燃机的主要噪声特征,即对噪声源的产生部件进行准确测试和分析。通过试验和信号处理相结合进行噪声源分离,根据内燃机工作原理和具体的结构特点,采取相应的措施对主要噪声源进行有效控制,达到降低整机噪声的目标。信号处理技术对试验环境和设备的要求比较低[1],试验过程简单,灵活性更强,因此成为目前噪声源识别研究热点。基于信号处理的噪声源识别方法发展很快,并在内燃机的振动噪声控制研究领域得到了广泛的应用。在柴油机噪声源分离领域常用的信号处理方法分为如下几种:模态分解法、时频分析法、相干分析法、盲源分离法。针对内燃机噪声源分离研究,一些学者[2-3]采用经验模态分解(EMD)-鲁棒性独立分量分析本文档来自技高网...

【技术保护点】
1.一种内燃机噪声源识别方法,步骤如下:/n(1)采集内燃机标准工况和倒拖工况的整机噪声信号,测试标准工况下缸盖、活塞敲击点主推力侧、喷油泵、涡轮增压器、空压机、油底壳、齿轮罩盖、缸盖罩的振动信号和缸压信号。/n(2)对振动信号和噪声信号进行去直流、去趋势项和滤波预处理,以减少信号采集误差;/n(3)对预处理的噪声信号进行改进变分模态分解IVMD,自适应获得不同频段的信号分量,即采用模拟退火改进粒子群算法进行VMD优化,方法如下:/n(a)初始化算法参数:粒子种群数Sizepop=100,最大迭代次数Mxiter=50,认知学习因子C1=1.495,社会学习因子C2=1.495,模态数K=[3...

【技术特征摘要】
1.一种内燃机噪声源识别方法,步骤如下:
(1)采集内燃机标准工况和倒拖工况的整机噪声信号,测试标准工况下缸盖、活塞敲击点主推力侧、喷油泵、涡轮增压器、空压机、油底壳、齿轮罩盖、缸盖罩的振动信号和缸压信号。
(2)对振动信号和噪声信号进行去直流、去趋势项和滤波预处理,以减少信号采集误差;
(3)对预处理的噪声信号进行改进变分模态分解IVMD,自适应获得不同频段的信号分量,即采用模拟退火改进粒子群算法进行VMD优化,方法如下:
(a)初始化算法参数:粒子种群数Sizepop=100,最大迭代次数Mxiter=50,认知学习因子C1=1.495,社会学习因子C2=1.495,模态数K=[3;4;5;6;7;8;9;10],惩罚因子a=[50,4000]的随机数,粒子飞行的最大速度Vmax=2,最小速度Vmin=-2;
(b)基于VMD算法对内燃机顶部噪声信号进行分解,以模态数K和惩罚因子a作为优化变量,以最小幅值谱熵平均值作为适应度函数,计算第一次迭代初始参量的适应度值,并找到初始个体和全局最优模态数Gbest_K和Zbest_K,初始个体和全局最优惩罚因子Gbest_a和Zbest_a,适应度函数幅值谱熵计算如下:



其中X为噪声分解分量序列,P为信号的概率分布,N是输入信号长度...

【专利技术属性】
技术研发人员:林杰威周启迪张俊红李伟东裘永波
申请(专利权)人:天津大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1